# 参考資料

歯車に関する詳細な資料は、別刷「技術資料」をご用意しております。

### 目 次

| 1.  | 歯形の大きさを表す基本寸法                         | 1   |
|-----|---------------------------------------|-----|
|     | (1) モジュール <b>m</b> (単位:mm)······      |     |
|     | (2) ダイヤメトラルピッチ <b>P</b> または <b>DP</b> | 1   |
|     | (3) サーキュラーピッチ <i>CP</i>               | · 1 |
| 2.  | 歯車組立のポイント                             | . 3 |
| 3.  | 平歯車及びはすば歯車の中心距離                       | 4   |
|     | (1) 平歯車及びはすば歯車の精度規格                   | . 4 |
|     | (2) 中心距離: 平行、又は食い違い軸を持つ歯車対の軸間の最短距離    |     |
| 4.  | 平歯車及びはすば歯車の軸の平行度                      | . 4 |
|     | (1) 適用範囲                              | . 4 |
|     | (2) 用語の定義                             | . 5 |
|     | (3) 許容値                               | . 5 |
| 5.  | バックラッシの測り方                            | . 7 |
|     | (1) か さ歯車のバックラッシ                      | . 7 |
|     | (2) ウォームギヤのバックラッシ                     | 8   |
| 6.  | 歯車の歯当たり                               | 9   |
| 7.  | 各種歯車の効率                               | 11  |
| 8.  | 歯車の潤滑                                 | 12  |
|     | (1) 歯車の潤滑の目的                          | 12  |
|     |                                       | 12  |
|     | (*/ / <del>S</del> —//=               | 13  |
|     |                                       | 14  |
|     | (5) 歯車材の組み合わせについて                     | 14  |
| 9.  | 騒音,振動の原因と対策                           | 15  |
| 10. | . 周波数成分による音の原因解析(低周波数帯域)              | 16  |

ベベルギヤ

| 11.許容伝達動力表の解説                                     | 17 |
|---------------------------------------------------|----|
| (1) 平歯車およびはずば歯車の曲げ強さ、歯面強さ                         | 17 |
| (2) かさ歯車の曲げ強さ、歯面強さ                                | 18 |
| (3) 円筒ウオームギヤ歯面強さ                                  | 18 |
| 12.許容伝達動力表の曲げ強さの使用方法例                             | 19 |
| 計算例 1. 規格歯車の許容伝達トルク:T [N.m] を求める。                 | 19 |
| 計算例 2. 平歯車の条件により規格歯車を選定する。                        | 20 |
| 動力の換算式                                            | 20 |
| 13.SI 単位への切換えで問題になる単位の換算率表                        | 21 |
| 14.歯車記号と用語                                        | 22 |
| 15.ISO 規格と JIS 規格の整合化                             | 23 |
| はじめに                                              | 23 |
| KG STOCK GEARS の精度について                            | 23 |
| 硬さ換算表・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・         | 25 |
| 鋼のビッカース硬さに対する近似的換算値                               | 25 |
| 鋼のロックウェル C 硬さに対する近似的換算値                           | 27 |
| 常用するはめ合いの穴の寸法許容差                                  | 29 |
| 常用するはめ合いの軸の寸法許容差                                  | 31 |
| メートル並目および細目ネジのピッチと下穴参考ドリル寸法                       | 33 |
| 六角穴付きボルトに対するざぐりおよびボルト穴の寸法                         | 34 |
| 平行キー用キー溝の形状及び寸法                                   | 35 |
| 軸用 C 形止め輪(参考)                                     | 38 |
| 穴用 C型止め輪(参考) ···································· | 39 |
| E 形止め輪(参考)                                        | 40 |

### 1. 歯形の大きさを表す基本寸法

歯車の歯形の大きさを表すのに、次の3種類があります。

### (1) モジュール *m* 単位:mm

基準ピッチを円周率で除した値をモジュールといい、歯の大きさを定めるものです。メートル制歯車の大きさを表 すもので、基準円直径d(mm)を歯数zで除した数値です。モジュールの値が大きいほど歯の大きさは大きくなります。

モジュール
$$m = \frac{$$
基準円直径 $d$   $mm)$  または歯先円直径 (外径) を  $da$  とすれば

$$m = \frac{da}{z+2}$$
 となります。図1-1にモジュールの原寸図を示します。

### (2) ダイヤメトラルピッチ *P* または *DP*

直径ピッチともいい、インチ制歯車の歯の大きさを表すもので、歯車zを基準円直径d (in) で除した数値です。つ まり直径1インチ当たりの歯数をいい*DP*の値が小さいほど歯の大きさは大きくなります。

$$DP = \frac{z+2}{d_a(in)}$$
 \(\gamma \text{\$\zeta\$} \text{\$\zeta\$} \text{\$\zeta\$}

モジュールとダイヤメトラルピッチとの間には次の関係があります。(モジュールとダイヤメトラルピッチとの比較)。

$$m = \frac{25.4}{DP}$$
 (mm)  $DP = \frac{25.4}{m}$ 

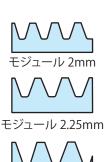
### (3) サーキュラーピッチ *CP*

円周ピッチともいい、互いに隣り合う2つの歯の中心間の距離をピッチ円の円弧で測った長さです。すなわちピッ チ円の円周を歯数で除した数値で,

$$CP = \frac{\mathcal{C} y \mathcal{F} \mathcal{P} \mathcal{O} \mathcal{P} \mathcal{B} (\pi \times d)}{\text{歯 数 } z}$$
 (mm)

#### **\_\_\_\_\_**

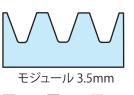
モジュール 0.5mm

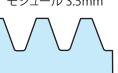

#### MVVVVV

モジュール 0.75mm

### M モジュール 0.8mm

M

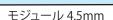

モジュール 1.5mm

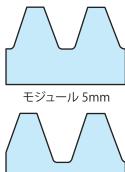






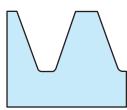













モジュール 6mm



モジュール 7mm

図1-1 モジュールの原寸図

ただし $\pi$ は円周率  $\pi$ =3.14159……

または歯先円直径 (外径) を da とすれば  $CP = \frac{\pi \times da}{z+2}$  (mm)

歯形の大きさを表すには、以上の3種類のいずれかが用いられますが、このうちサーキュラーピッチ*CP*は、目的の移動距離、及び位置決めに使用されています。

なお、モジュールの標準値は、日本工業規格 JIS B 1701-2:1999円筒歯車-インボリュート歯車歯形 第2部 モジュール、及び同規格の付属書(規定) - ISO 54に規定されていないインボリュート円筒歯車歯 形のモジュール 1 未満一の標準値を下記に示します。

表1-1 円筒歯車のモジュールの標準値

単位mm

| I   | II   | I    | II    | I  | II    | I  | II |
|-----|------|------|-------|----|-------|----|----|
| 0.1 |      | 1    |       |    | 5.5   | 25 |    |
|     | 0.15 |      | 1.125 | 6  |       |    | 28 |
| 0.2 |      | 1.25 |       |    | (6.5) | 32 |    |
|     | 0.25 |      | 1.375 |    | 7     |    | 36 |
| 0.3 |      | 1.5  |       | 8  |       | 40 |    |
|     | 0.35 |      | 1.75  |    | 9     |    | 45 |
| 0.4 |      | 2    |       | 10 |       | 50 |    |
|     | 0.45 |      | 2.25  |    | 11    |    |    |
| 0.5 |      | 2.5  |       | 12 |       |    |    |
|     | 0.55 |      | 2.75  |    | 14    |    |    |
| 0.6 |      | 3    |       | 16 |       |    |    |
|     | 0.7  |      | 3.5   |    | 18    |    |    |
|     | 0.75 | 4    |       | 20 |       |    |    |
| 0.8 |      |      | 4.5   |    | 22    |    |    |
|     | 0.9  | 5    |       |    |       |    |    |

できるだけ、I列のモジュールを用いることが望ましい。モジュール6.5は、できる限り避けるのがよい。

かさ歯車の標準値は、JIS B 1706-2:1999すぐばかさ歯車-第2部 モジュール及びダイヤメトラルピッチ、及び同規格の付属書 (規定) -ISO 678に規定されていないすぐばかさ歯車のモジュール1未満-の標準値を抜粋して下記に示します。なお、ダイヤメトラルピッチについては省略します。

表1-2 すぐばかさ歯車のモジュールの標準値

単位mm

|     |      |      |       |    | <u> </u> |
|-----|------|------|-------|----|----------|
| I   | II   | I    | II    | I  | II       |
| 0.3 |      | 1    |       |    | 3.5      |
|     | 0.35 |      | 1.125 | 4  |          |
| 0.4 |      | 1.25 |       |    | 4.5      |
|     | 0.45 |      | 1.375 | 5  |          |
| 0.5 |      | 1.5  |       |    | 5.5      |
|     | 0.55 |      | 1.75  | 6  |          |
| 0.6 |      | 2    |       |    | (6.5)    |
|     | 0.7  |      | 2.25  |    | 7        |
|     | 0.75 | 2.5  |       | 8  |          |
| 0.8 |      |      | 2.75  |    | 9        |
|     | 0.9  | 3    |       | 10 |          |

できるだけ、I列のモジュールを用いることが望ましい。モジュール6.5は、できる限り避けるのがよい。

表1-3 モジュールとダイヤメトラルピッチの比較

単位mm

|            |       |       |       |       |       |       |       |       |       | _     | T-122111111 |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------------|
| モジュール      | 9     | 8.467 | 8     | 7.257 | 7     | 6.35  | 6     | 5.08  | 5     | 4.233 | 4           |
| ダイヤメトラルピッチ | 2.822 | 3     | 3.175 | 3.5   | 3.629 | 4     | 4.233 | 5     | 5.08  | 6     | 6.35        |
| 全歯たけ       | 20.25 | 19.05 | 18.00 | 16.33 | 15.75 | 14.29 | 13.50 | 11.43 | 11.25 | 9.52  | 9.00        |
| ピッチ        | 28.27 | 26.60 | 25.13 | 22.80 | 21.99 | 19.95 | 18.85 | 15.96 | 15.71 | 13.30 | 12.57       |

| モジュール      | 3.629 | 3.5   | 3.175 | 3    | 2.822 | 2.54 | 2.5   | 2.309 | 2.25   | 2.117 | 2     |
|------------|-------|-------|-------|------|-------|------|-------|-------|--------|-------|-------|
| ダイヤメトラルピッチ | 7     | 7.257 | 8     | 8.47 | 9     | 10   | 10.16 | 11    | 11.289 | 12    | 12.70 |
| 全歯たけ       | 8.17  | 7.88  | 7.14  | 6.75 | 6.35  | 5.72 | 5.63  | 5.20  | 5.06   | 4.76  | 4.50  |
| ピッチ        | 11.40 | 11.00 | 9.98  | 9.43 | 8.87  | 7.98 | 7.85  | 7.25  | 7.07   | 6.65  | 6.28  |

| モジュール      | 1.814 | 1.75   | 1.588 | 1.5    | 1.411 | 1.27 | 1.25  | 1    | 0.8   | 0.75   | 0.5  |
|------------|-------|--------|-------|--------|-------|------|-------|------|-------|--------|------|
| ダイヤメトラルピッチ | 14    | 14.514 | 16    | 16.933 | 18    | 20   | 20.32 | 25.4 | 31.75 | 33.867 | 50.8 |
| 全歯たけ       | 4.08  | 3.94   | 3.57  | 3.38   | 3.17  | 2.86 | 2.81  | 2.25 | 1.80  | 1.69   | 1.13 |
| ピッチ        | 5.70  | 5.50   | 4.99  | 4.71   | 4.43  | 3.99 | 3.93  | 3.14 | 2.51  | 2.36   | 1.57 |

注:全歯たけは頂げきCを0.25mとして計算しています。

### 2. 歯車組立のポイント

歯車を組立るときには、次のような点に注意しての作業をおすすめします。

① 歯車を使用・保管する際は歯車本体に傷などが付かないよう注意してください。また、さびなどが発生しないよう気を付けて保管してください。

たとえ小さなキズでも騒音の原因となる場合があります。

#### ② バックラッシの確認を行う。

バックラッシは、大きくても小さくても騒音の原因となります。適正バックラッシが保たれているかを確認してください。もし、適正バックラッシでない場合は、中心距離の調整を行ってください。

弊社ギヤのバックラッシは、各商品インフォメーションページをご覧ください。

#### ③ 歯当りの確認を行う。

適正な歯当りが保たれていないと、振動・騒音の原因になるばかりだけでなく、歯車の寿命にも悪影響を及ぼします。歯当りについては、参考資料「歯車の歯当たり」をご覧ください。

#### ④ 適正潤滑油を適正油量用いる。

適正潤滑油と適正油量は参考資料「歯車の潤滑」をご覧ください。

#### ⑤なじみ運転の実施。

#### ウォームギヤの試運転の重要性

なじみ運転により歯当り面積が広くなり、歯面強度の向上が期待できます。ウォームギヤの歯形は他の歯車の歯形と比べて複雑な曲面であり、精度よく仕上げることは難しく歯面粗さの向上も加工したままでは限界があります。負荷運転に際していきなり全負荷またはそれに近い負荷をかけると、歯面の焼付(かじり)を起こしやすくなります。そのためなじみ運転を行う必要があります。

なじみ運転の効果として歯面の細かい凹凸を少なくし、歯当り面積を増加させる。(単位面積当たりの負荷の減少) および接触(噛み合い)に伴う歯面の加工硬化によって耐摩耗性が向上することが考えられます。これらにより、歯車の寿命の延長や振動・騒音の低減が期待できます。

#### ウォームギヤの試運転の方法

なじみ運転の具体的方法として無負荷運転から歯当りを確認しながら徐々に負荷を増加させながら運転させます。 また、潤滑油はなじみ運転後、全量交換し、その後は6ヶ月または2500時間ごとに交換することをおすすめします。

⑥ これらの他、歯車全体の動バランス、組立方法等にも留意することをおすすめします。

実際の運転状況により最終調整を行ってください。

### 3. 平歯車及びはすば歯車の中心距離

平歯車及びはすば歯車の中心距離は、できる限り正確に加工し、歯車を組み立てて下さい。表3-1に**日本歯車工業会JGMA1101-1(2000**)平歯車及びはすば歯車の中心距離の許容差の抜粋を示します。

### 中心距離の許容差

(1) 平歯車及びはすば歯車の精度規格

JIS B 1702-1及びJIS B 1702-2のN3~N12級歯車(一般に,研削加工又は機械加工される範囲)に対して中心距離の許容差を示します。

(2) 中心距離:平行平歯車対,又は食い違い軸をもつ歯車対(45°のねじれ角のあるヘリカルギヤ)の軸間の最短距離。 例:①平歯車の場合

モジュール 0.5、歯数 20の平歯車:基準円直径の半径 5

モジュール 0.5、歯数 25の平歯車:基準円直径の半径 6.25 →中心距離:11.25mm ②はすば歯車の場合(歯直角モジュール) 規格品の基準円直径は商品ページで確認できます。

モジュール 1.5、歯数 13のはすば歯車:基準円直径の半径 13.79

モジュール 1.5、歯数 26のはすば歯車: 基準円直径の半径 27.575 →中心距離: 41.365mm

#### 表3-1 歯車の中心距離の許容差

\*各許容値が土符号となっていますが、外歯車対の中心距離ではプラス側の許容値を推奨します。 反対に内歯車対の中心距離では、マイナス側の許容値を推奨します。

単位:μm

|          | 歯車の精度等級<br>中心距離(mm) |     | N5, N6 | N7, N8 | N9, N10 | N11, N12 |
|----------|---------------------|-----|--------|--------|---------|----------|
| 5以上      | 20以下                | ±6  | ±10    | ±16    | ±26     | ±65      |
| 20を超え    | 50以下                | ±8  | ±12    | ±20    | ±31     | ±80      |
| 50を超え    | 125以下               | ±12 | ±20    | ±32    | ±50     | ±125     |
| 125を超え   | 280以下               | ±16 | ±26    | ±40    | ±65     | ±160     |
| 280を超え   | 560以下               | ±22 | ±35    | ±55    | ±88     | ±220     |
| 560を超え   | 1,000以下             | ±28 | ±45    | ±70    | ±115    | ±280     |
| 1,000を超え | 1,600以下             | ±39 | ±62    | ±98    | ±155    | ±390     |
| 1,600を超え | 2,500以下             | ±55 | ±88    | ±140   | ±220    | ±550     |
| 2,500を超え | 4,000以下             | ±84 | ±130   | ±205   | ±330    | ±825     |

### 4. 平歯車及びはすば歯車の軸の平行度

IGMA1102 (2000) の抜粋を示します。

0. 序文 この規格は平歯車及びはすば歯車の軸の平行精度の許容値について規定する。 この規格は、基本的にはISO/TR10064-3 (1996) の推奨値と一致している。

### (1) 適用範囲

この規格は、次のような諸元をもつ鉄鋼製インボリュート平歯車及びはすば歯車の軸の平行精度について規定する。 以下この規格に適用される歯車を単に歯車という。

① 歯直角モジュール 0.5~70

② 基準円直径 5~10,000③ 歯幅 4~1,000

備考 1. やまば歯車の軸にもこの規格を適用する。

2. この規格の引用規格を次に示す。

JIS B 0102(1999) 歯車用語 - 幾何学的定義 JIS B 1702-1(1998) 円筒歯車 - 精度等級 - 第1部

歯車の歯面に関する誤差の定義及び許容値

ISO/TR10064-3 (1996) Cylindrical gears-Code of inspection practice-part3

### (2) 用語の定義

この規格で用いる用語の定義は、JIS B 0102 (1999) (歯車の歯面用語-幾何学的定義) によるほか、次による。

- ① 軸の平行精度 軸の平行誤差と軸の食い違い誤差とによって構成される精度。
- ② **軸の平行誤差** 一方の歯車側の軸芯 a 上の,測定区間 L の両端の点を A , B とし,一方の点 A と他方の軸の軸心 b とを含む平面 H と,点 A を通り b に平行で H に垂直な平面 V とを考え,点 B の H への正射影を C としたとき の2点  $0^{(1)}$ , C 間の距離(図4-1参照)。

注(1): 点 0 は, V, H 及び点Bを含み V と H に垂直な平面 S との交差である。

③ **軸の食い違い誤差** (2) において, 点 B の V への正射影を D としたときの2点 O, D 間の距離(図4-1参照)

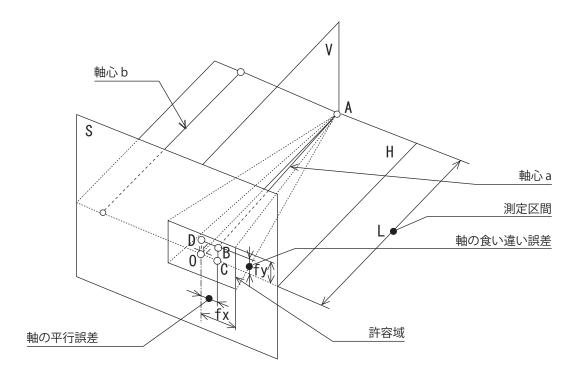



図4-1 軸の平行誤差と食い違い誤差

### (3) 許容値

歯車の軸の平行精度の誤差の許容値は、JIS B 1702-1(1998)における精度等級NO  $\sim$  N12に対応したものとし、次のとおりとします。

① 軸の平行誤差の許容値 fx

歯車軸の測定区間 L に対する  $f_X$  の求めかたは次の式によります。

$$fx = \frac{L}{h}fx'$$

ここに, L : 測定区間の長さ (mm)

b:歯幅(mm) ただし、大小歯車の歯幅が異なる場合はその小さい方

fx':表4-1に示す数値 (μm)

② 軸の食い違い誤差の許容値 fy 歯車軸の測定区間 L に対する fy の求めかたは次の式によります。

$$fy = \frac{L}{b}fy'$$

ここに, *L* : 測定区間の長さ (mm)

b:歯幅(mm) ただし、大小歯車の歯幅が異なる場合はその小さい方

fv': 表4-2に示す数値 (μm)

#### 備考

使用目的によっては、軸の平行精度の誤差の許容値に、歯車の精度等級と異なる等級の値を採用することできます。

ベベルギヤ

表4-1 歯幅当たりの軸の平行誤差の許容値 fx<sup>7</sup>

単位: μm

| 甘淮田市汉 d (2000)                                                                                                                                                                                                   | #                                                                                                                                                                                |     |     |     |     |     | 歯   | 車精度等 | 級  |    |    |     |     |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|------|----|----|----|-----|-----|-----|
| 基準円直径 d (mm)                                                                                                                                                                                                     | 歯幅 b (mm)                                                                                                                                                                        | N0  | N1  | N2  | N3  | N4  | N5  | N6   | N7 | N8 | N9 | N10 | N11 | N12 |
|                                                                                                                                                                                                                  | 4≦b≦10                                                                                                                                                                           | 1.1 | 1.5 | 2.2 | 3.1 | 4.3 | 6.0 | 8.5  | 12 | 17 | 24 | 35  | 49  | 69  |
| 5≦d≦20                                                                                                                                                                                                           | 10 <b≦20< td=""><td>1.2</td><td>1.7</td><td>2.4</td><td>3.4</td><td>4.9</td><td>7.0</td><td>9.5</td><td>14</td><td>19</td><td>28</td><td>39</td><td>55</td><td>78</td></b≦20<>   | 1.2 | 1.7 | 2.4 | 3.4 | 4.9 | 7.0 | 9.5  | 14 | 19 | 28 | 39  | 55  | 78  |
|                                                                                                                                                                                                                  | 20 <b≦40< td=""><td>1.4</td><td>2.0</td><td>2.8</td><td>3.9</td><td>5.5</td><td>8.0</td><td>11</td><td>16</td><td>22</td><td>31</td><td>45</td><td>63</td><td>89</td></b≦40<>    | 1.4 | 2.0 | 2.8 | 3.9 | 5.5 | 8.0 | 11   | 16 | 22 | 31 | 45  | 63  | 89  |
|                                                                                                                                                                                                                  | 4≦b≦10                                                                                                                                                                           | 1.1 | 1.6 | 2.2 | 3.2 | 4.5 | 6.5 | 9.0  | 13 | 18 | 25 | 36  | 51  | 72  |
| 20 <d≦50< td=""><td>10<b≦20< td=""><td>1.3</td><td>1.8</td><td>2.5</td><td>3.6</td><td>5.0</td><td>7.0</td><td>10</td><td>14</td><td>20</td><td>29</td><td>40</td><td>57</td><td>81</td></b≦20<></td></d≦50<>    | 10 <b≦20< td=""><td>1.3</td><td>1.8</td><td>2.5</td><td>3.6</td><td>5.0</td><td>7.0</td><td>10</td><td>14</td><td>20</td><td>29</td><td>40</td><td>57</td><td>81</td></b≦20<>    | 1.3 | 1.8 | 2.5 | 3.6 | 5.0 | 7.0 | 10   | 14 | 20 | 29 | 40  | 57  | 81  |
|                                                                                                                                                                                                                  | 20 <b≦40< td=""><td>1.4</td><td>2.0</td><td>2.9</td><td>4.1</td><td>5.5</td><td>8.0</td><td>11</td><td>16</td><td>23</td><td>32</td><td>46</td><td>65</td><td>92</td></b≦40<>    | 1.4 | 2.0 | 2.9 | 4.1 | 5.5 | 8.0 | 11   | 16 | 23 | 32 | 46  | 65  | 92  |
|                                                                                                                                                                                                                  | 4≦b≦10                                                                                                                                                                           | 1.2 | 1.7 | 2.4 | 3.3 | 4.7 | 6.5 | 9.5  | 13 | 19 | 27 | 38  | 53  | 76  |
| 50 <d≦125< td=""><td>10<b≦20< td=""><td>1.3</td><td>1.9</td><td>2.6</td><td>3.7</td><td>5.5</td><td>7.5</td><td>11</td><td>15</td><td>21</td><td>30</td><td>42</td><td>60</td><td>84</td></b≦20<></td></d≦125<>  | 10 <b≦20< td=""><td>1.3</td><td>1.9</td><td>2.6</td><td>3.7</td><td>5.5</td><td>7.5</td><td>11</td><td>15</td><td>21</td><td>30</td><td>42</td><td>60</td><td>84</td></b≦20<>    | 1.3 | 1.9 | 2.6 | 3.7 | 5.5 | 7.5 | 11   | 15 | 21 | 30 | 42  | 60  | 84  |
| 50<0≦125                                                                                                                                                                                                         | 20 <b≦40< td=""><td>1.5</td><td>2.1</td><td>3.0</td><td>4.2</td><td>6.0</td><td>8.5</td><td>12</td><td>17</td><td>24</td><td>34</td><td>48</td><td>68</td><td>95</td></b≦40<>    | 1.5 | 2.1 | 3.0 | 4.2 | 6.0 | 8.5 | 12   | 17 | 24 | 34 | 48  | 68  | 95  |
|                                                                                                                                                                                                                  | 40 <b≦80< td=""><td>1.7</td><td>2.5</td><td>3.5</td><td>4.9</td><td>7.0</td><td>10</td><td>14</td><td>20</td><td>28</td><td>39</td><td>56</td><td>79</td><td>111</td></b≦80<>    | 1.7 | 2.5 | 3.5 | 4.9 | 7.0 | 10  | 14   | 20 | 28 | 39 | 56  | 79  | 111 |
|                                                                                                                                                                                                                  | 4≦b≦10                                                                                                                                                                           | 1.3 | 1.8 | 2.5 | 3.6 | 5.0 | 7.0 | 10   | 14 | 20 | 29 | 40  | 57  | 81  |
| 125 <d≦280< td=""><td>10<b≦20< td=""><td>1.4</td><td>2.0</td><td>2.8</td><td>4.0</td><td>5.5</td><td>8.0</td><td>11</td><td>16</td><td>22</td><td>32</td><td>45</td><td>63</td><td>90</td></b≦20<></td></d≦280<> | 10 <b≦20< td=""><td>1.4</td><td>2.0</td><td>2.8</td><td>4.0</td><td>5.5</td><td>8.0</td><td>11</td><td>16</td><td>22</td><td>32</td><td>45</td><td>63</td><td>90</td></b≦20<>    | 1.4 | 2.0 | 2.8 | 4.0 | 5.5 | 8.0 | 11   | 16 | 22 | 32 | 45  | 63  | 90  |
| 123 \ U \(\geq 200                                                                                                                                                                                               | 20 <b≦40< td=""><td>1.6</td><td>2.2</td><td>3.2</td><td>4.5</td><td>6.5</td><td>9.0</td><td>13</td><td>18</td><td>25</td><td>36</td><td>50</td><td>71</td><td>101</td></b≦40<>   | 1.6 | 2.2 | 3.2 | 4.5 | 6.5 | 9.0 | 13   | 18 | 25 | 36 | 50  | 71  | 101 |
|                                                                                                                                                                                                                  | 40 <b≦80< td=""><td>1.8</td><td>2.6</td><td>3.6</td><td>5.0</td><td>7.5</td><td>10</td><td>15</td><td>21</td><td>29</td><td>41</td><td>58</td><td>82</td><td>117</td></b≦80<>    | 1.8 | 2.6 | 3.6 | 5.0 | 7.5 | 10  | 15   | 21 | 29 | 41 | 58  | 82  | 117 |
| 200 < 1 < 500                                                                                                                                                                                                    | 10 <b≦20< td=""><td>1.5</td><td>2.1</td><td>3.0</td><td>4.3</td><td>6.0</td><td>8.5</td><td>12</td><td>17</td><td>24</td><td>34</td><td>48</td><td>68</td><td>97</td></b≦20<>    | 1.5 | 2.1 | 3.0 | 4.3 | 6.0 | 8.5 | 12   | 17 | 24 | 34 | 48  | 68  | 97  |
|                                                                                                                                                                                                                  | 20 <b≦40< td=""><td>1.7</td><td>2.4</td><td>3.4</td><td>4.8</td><td>6.5</td><td>9.5</td><td>13</td><td>19</td><td>27</td><td>38</td><td>54</td><td>76</td><td>108</td></b≦40<>   | 1.7 | 2.4 | 3.4 | 4.8 | 6.5 | 9.5 | 13   | 19 | 27 | 38 | 54  | 76  | 108 |
| 280 <d≦560< td=""><td>40<b≦80< td=""><td>1.9</td><td>2.7</td><td>3.9</td><td>5.5</td><td>7.5</td><td>11</td><td>15</td><td>22</td><td>31</td><td>44</td><td>62</td><td>87</td><td>124</td></b≦80<></td></d≦560<> | 40 <b≦80< td=""><td>1.9</td><td>2.7</td><td>3.9</td><td>5.5</td><td>7.5</td><td>11</td><td>15</td><td>22</td><td>31</td><td>44</td><td>62</td><td>87</td><td>124</td></b≦80<>    | 1.9 | 2.7 | 3.9 | 5.5 | 7.5 | 11  | 15   | 22 | 31 | 44 | 62  | 87  | 124 |
|                                                                                                                                                                                                                  | 80 <b≦160< td=""><td>2.3</td><td>3.2</td><td>4.6</td><td>6.5</td><td>9.0</td><td>13</td><td>18</td><td>26</td><td>36</td><td>52</td><td>73</td><td>103</td><td>146</td></b≦160<> | 2.3 | 3.2 | 4.6 | 6.5 | 9.0 | 13  | 18   | 26 | 36 | 52 | 73  | 103 | 146 |

### 表4-2 歯幅当たりの軸の食違い誤差の許容値 fy'

単位:μm

| 甘淮田古汉 d (ლლ)                                                                                                                                                                                                           | 告悔 b /mm)                                                                                                                                                                        | 歯車精度等級 |     |     |     |     |     |     |     |     |    |     |     |     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|--|
| 基準円直径 d (mm)                                                                                                                                                                                                           | 歯幅 b (mm)                                                                                                                                                                        | N0     | N1  | N2  | N3  | N4  | N5  | N6  | N7  | N8  | N9 | N10 | N11 | N12 |  |
|                                                                                                                                                                                                                        | 4≦b≦10                                                                                                                                                                           | 0.5    | 0.8 | 1.1 | 1.5 | 2.2 | 3.1 | 4.3 | 6.0 | 8.5 | 12 | 17  | 24  | 35  |  |
| 5≦d≦20                                                                                                                                                                                                                 | 10 <b≦20< td=""><td>0.6</td><td>0.9</td><td>1.2</td><td>1.7</td><td>2.4</td><td>3.4</td><td>4.9</td><td>7.0</td><td>9.5</td><td>14</td><td>19</td><td>28</td><td>39</td></b≦20<> | 0.6    | 0.9 | 1.2 | 1.7 | 2.4 | 3.4 | 4.9 | 7.0 | 9.5 | 14 | 19  | 28  | 39  |  |
|                                                                                                                                                                                                                        | 20 <b≦40< td=""><td>0.7</td><td>1.0</td><td>1.4</td><td>2.0</td><td>2.8</td><td>3.9</td><td>5.5</td><td>8.0</td><td>11</td><td>16</td><td>22</td><td>31</td><td>45</td></b≦40<>  | 0.7    | 1.0 | 1.4 | 2.0 | 2.8 | 3.9 | 5.5 | 8.0 | 11  | 16 | 22  | 31  | 45  |  |
|                                                                                                                                                                                                                        | 4≦b≦10                                                                                                                                                                           | 0.6    | 0.8 | 1.1 | 1.6 | 2.2 | 3.2 | 4.5 | 6.5 | 9.0 | 13 | 18  | 25  | 36  |  |
| 20 <d≦50< td=""><td>10<b≦20< td=""><td>0.6</td><td>0.9</td><td>1.3</td><td>1.8</td><td>2.5</td><td>3.6</td><td>5.0</td><td>7.0</td><td>10</td><td>14</td><td>20</td><td>29</td><td>40</td></b≦20<></td></d≦50<>        | 10 <b≦20< td=""><td>0.6</td><td>0.9</td><td>1.3</td><td>1.8</td><td>2.5</td><td>3.6</td><td>5.0</td><td>7.0</td><td>10</td><td>14</td><td>20</td><td>29</td><td>40</td></b≦20<>  | 0.6    | 0.9 | 1.3 | 1.8 | 2.5 | 3.6 | 5.0 | 7.0 | 10  | 14 | 20  | 29  | 40  |  |
|                                                                                                                                                                                                                        | 20 <b≦40< td=""><td>0.7</td><td>1.0</td><td>1.4</td><td>2.0</td><td>2.9</td><td>4.1</td><td>5.5</td><td>8.0</td><td>11</td><td>16</td><td>23</td><td>32</td><td>46</td></b≦40<>  | 0.7    | 1.0 | 1.4 | 2.0 | 2.9 | 4.1 | 5.5 | 8.0 | 11  | 16 | 23  | 32  | 46  |  |
|                                                                                                                                                                                                                        | 4≦b≦10                                                                                                                                                                           | 0.6    | 0.8 | 1.2 | 1.7 | 2.4 | 3.3 | 4.7 | 6.5 | 9.5 | 13 | 19  | 27  | 38  |  |
| 50 <d≦125< td=""><td>10<b≦20< td=""><td>0.7</td><td>0.9</td><td>1.3</td><td>1.9</td><td>2.6</td><td>3.7</td><td>5.5</td><td>7.5</td><td>11</td><td>15</td><td>21</td><td>30</td><td>42</td></b≦20<></td></d≦125<>      | 10 <b≦20< td=""><td>0.7</td><td>0.9</td><td>1.3</td><td>1.9</td><td>2.6</td><td>3.7</td><td>5.5</td><td>7.5</td><td>11</td><td>15</td><td>21</td><td>30</td><td>42</td></b≦20<>  | 0.7    | 0.9 | 1.3 | 1.9 | 2.6 | 3.7 | 5.5 | 7.5 | 11  | 15 | 21  | 30  | 42  |  |
| 30 \ u ≧ 123                                                                                                                                                                                                           | 20 <b≦40< td=""><td>0.7</td><td>1.1</td><td>1.5</td><td>2.1</td><td>3.0</td><td>4.2</td><td>6.0</td><td>8.5</td><td>12</td><td>17</td><td>24</td><td>34</td><td>48</td></b≦40<>  | 0.7    | 1.1 | 1.5 | 2.1 | 3.0 | 4.2 | 6.0 | 8.5 | 12  | 17 | 24  | 34  | 48  |  |
|                                                                                                                                                                                                                        | 40 <b≦80< td=""><td>0.9</td><td>1.2</td><td>1.7</td><td>2.5</td><td>3.5</td><td>4.9</td><td>7.0</td><td>10</td><td>14</td><td>20</td><td>28</td><td>39</td><td>56</td></b≦80<>   | 0.9    | 1.2 | 1.7 | 2.5 | 3.5 | 4.9 | 7.0 | 10  | 14  | 20 | 28  | 39  | 56  |  |
|                                                                                                                                                                                                                        | 4≦b≦10                                                                                                                                                                           | 0.6    | 0.9 | 1.3 | 1.8 | 2.5 | 3.5 | 5.0 | 7.0 | 10  | 14 | 20  | 29  | 40  |  |
| 125 <d≦280 -<="" td=""><td>10<b≦20< td=""><td>0.7</td><td>1.0</td><td>1.4</td><td>2.0</td><td>2.8</td><td>4.0</td><td>5.5</td><td>8.0</td><td>11</td><td>16</td><td>22</td><td>32</td><td>45</td></b≦20<></td></d≦280> | 10 <b≦20< td=""><td>0.7</td><td>1.0</td><td>1.4</td><td>2.0</td><td>2.8</td><td>4.0</td><td>5.5</td><td>8.0</td><td>11</td><td>16</td><td>22</td><td>32</td><td>45</td></b≦20<>  | 0.7    | 1.0 | 1.4 | 2.0 | 2.8 | 4.0 | 5.5 | 8.0 | 11  | 16 | 22  | 32  | 45  |  |
| 123\u=200                                                                                                                                                                                                              | 20 <b≦40< td=""><td>0.8</td><td>1.1</td><td>1.6</td><td>2.2</td><td>3.2</td><td>4.5</td><td>6.5</td><td>9.0</td><td>13</td><td>18</td><td>25</td><td>36</td><td>50</td></b≦40<>  | 0.8    | 1.1 | 1.6 | 2.2 | 3.2 | 4.5 | 6.5 | 9.0 | 13  | 18 | 25  | 36  | 50  |  |
|                                                                                                                                                                                                                        | 40 <b≦80< td=""><td>0.9</td><td>1.3</td><td>1.8</td><td>2.6</td><td>3.6</td><td>5.0</td><td>7.5</td><td>10</td><td>15</td><td>21</td><td>29</td><td>41</td><td>58</td></b≦80<>   | 0.9    | 1.3 | 1.8 | 2.6 | 3.6 | 5.0 | 7.5 | 10  | 15  | 21 | 29  | 41  | 58  |  |
|                                                                                                                                                                                                                        | 10 <b≦20< td=""><td>0.8</td><td>1.1</td><td>1.5</td><td>2.1</td><td>3.0</td><td>4.3</td><td>6.0</td><td>8.5</td><td>12</td><td>17</td><td>24</td><td>34</td><td>48</td></b≦20<>  | 0.8    | 1.1 | 1.5 | 2.1 | 3.0 | 4.3 | 6.0 | 8.5 | 12  | 17 | 24  | 34  | 48  |  |
| 280 <d≦560< td=""><td>20<b≦40< td=""><td>0.8</td><td>1.2</td><td>1.7</td><td>2.4</td><td>3.4</td><td>4.8</td><td>6.5</td><td>9.5</td><td>13</td><td>19</td><td>27</td><td>38</td><td>54</td></b≦40<></td></d≦560<>     | 20 <b≦40< td=""><td>0.8</td><td>1.2</td><td>1.7</td><td>2.4</td><td>3.4</td><td>4.8</td><td>6.5</td><td>9.5</td><td>13</td><td>19</td><td>27</td><td>38</td><td>54</td></b≦40<>  | 0.8    | 1.2 | 1.7 | 2.4 | 3.4 | 4.8 | 6.5 | 9.5 | 13  | 19 | 27  | 38  | 54  |  |
|                                                                                                                                                                                                                        | 40 <b≦80< td=""><td>1.0</td><td>1.4</td><td>1.9</td><td>2.7</td><td>3.9</td><td>5.5</td><td>7.5</td><td>11</td><td>15</td><td>22</td><td>31</td><td>44</td><td>62</td></b≦80<>   | 1.0    | 1.4 | 1.9 | 2.7 | 3.9 | 5.5 | 7.5 | 11  | 15  | 22 | 31  | 44  | 62  |  |

# ,

### 5. バックラッシの測り方

### (1) かさ歯車のバックラッシ

かさ歯車のバックラッシを測る方法には、平歯車やはすば歯車と同様に、円周方向バックラッシj<sub>i</sub>と法線方向バックラッシj<sub>i</sub>を測る2つの方法があります。

小歯車を固定し,大歯車の外端にインジケータを当 てて測定します。

歯直角圧力角を $\alpha_n$ , まがり歯かさ歯車の歯の中央 (平均) ねじれ角を $\beta_m$ とすると,  $j_i$ と $j_n$ の間には次のような関係があります。

 $j_n = j_t \cos \alpha_n \cos \beta_m$   $j_t = j_n / \cos \alpha_n \cos \beta_m$ 

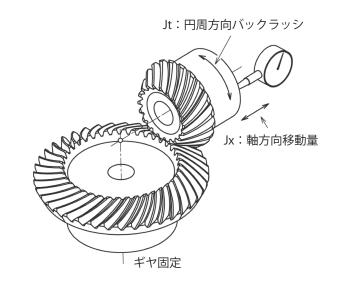
(上記の式は、まがり歯かさ歯車の式ですが、すぐ歯かさ歯車では $\cos \beta_m = 1$ です。)

JISでは、円周方向バックラッシをJIS B 1705 かさ歯 車のバックラッシで規定しています。

これとは別な方法として、かさ歯車を所定の位置決め距離に組立て、小歯車を軸方向に動かせて、その移動量をインジケータで読みとる方法が用いられます(図5-2)。 円周方向バックラッシ $j_i$ と位置決め方向のバックラッシ $j_s$ の間には次のような関係があります。

 $j_x=j_t/2 \tan \alpha_n \sin \delta_1$  すぐ歯かさ歯車  $j_x=j_t/2 \tan \alpha_t \sin \delta_1$  まがり歯かさ歯車

ここに.


 $j_u$ : 正面における円周方向のバックラッシ $j_u = j_t/\cos \alpha_t$ 

 $\alpha_t$ : 正面圧力角  $\alpha_t = \tan^{-1}(\tan \alpha_n / \cos \beta)$ 

例えば、圧力角20° 歯数比1:1のすぐ歯かさ歯車において、円周方向バックラッシ $j_x$ を1mmとすると、位置決め方向バックラッシ $j_x$ は1.94mmとなります。すなわち、微小なバックラッシを約2倍に拡大して測ることができます。



図5-1 かさ歯車のバックラッシ測定方法(円周方向)



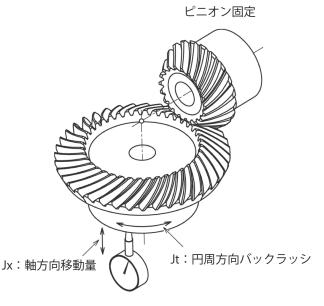



図5-2 歯車を軸方向に移動させてバックラッシを測る

### (2) ウォームギヤのバックラッシ

平歯車とはすば歯車と同様の方法で測定します。一般にはウォームを固定し、ウォームホイールの歯面にインジケータを当てて測定する方法が用いられます。ウォームギヤに関するバックラッシのJIS規格はまだ制定されていないため、商品ページに示すバックラッシの値は弊社ギヤを所定の中心距離に組み立てた場合に、設定されるバックラッシです。

精密な位置決めや角度割り出しに用いるウォームギヤのバックラッシは、慎重に小さくする必要がありますが、動力伝達に用いる場合は、発熱による膨張を考慮し、大きめに設定されることをおすすめします。バックラッシが大きくてもウォームギヤの性能はほとんど同じです。

バックラッシによるウォームの空転角度が問題視される場合があります。ここでは、ウォームギヤのバックラッシ計算よりもウォームの空転角度の計算例を挙げて説明します。

図5-3の様に、ウォームホイールの歯面にインジケータを当て、円周方向のバックラッシを測定します。

例えば、モジュール2、歯数比1:30 ウォームの基準円直径31mm ウォームの進み角3°42′ リード=6.2963 のウォームギヤで、円周方向バックラッシ測定値が 0.2mmであった場合、以下の式で求めます。

ウォームの空転角 =  $\frac{360^{\circ} \times 円周バックラッシ}{$ リード =  $360^{\circ} \times 0.2/6.2963$  =  $11^{\circ}27'$ 

となり, ウォームが11°27′空転することになります。 (ウォームのリード: ウォームが一回転するときに, 歯面のある一点が軸方向に進む距離)

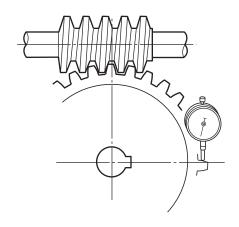



図5-3 ウォームギヤのバックラッシの測り方 (円周方向)

歯車の寿命にも悪影響を及ぼします。旧JIS B 1741-1977歯車の歯当たりの抜粋を示します。旧JIS B 1741「歯車の歯当り」による歯当りの割合は次の通り規定されています。

6. 歯車の歯当たり

歯すじ方向については、有効歯すじ長さ b' に対する歯当りの長さの平均値  $b_c$  の割合(%)をいい、歯たけ方向については、かみ合い歯たけ h' に対する歯当りの幅の平均値  $l_c$  の割合(%)をいう。

歯車単体の精度がどんなに良くても、歯車の歯当りが正しくないと、振動・騒音の原因になるばかりだけでなく、

注\* 歯の端部に面取りがある場合には、面取り部の寸法を差し引いた長さとする。なお、大小両歯車の有効歯すじの長さが異なる場合には小さい方をとります。

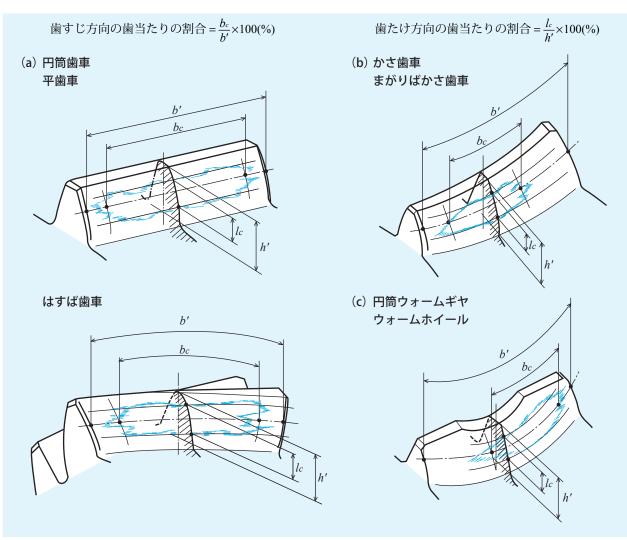



図6-1 歯車の歯当り

クラウニングを施したかさ歯車で、無負荷のときの、 歯すじ方向の歯当りの中心は、外端から歯すじの長さ の60%付近にあることが望ましい(図6-2参照)。

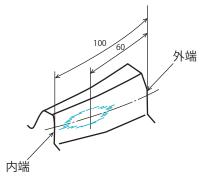



図6-2 クラウニングを施したかさ歯車の歯当り

参考資料

円筒ウォームギヤの歯当りの割合は、ウォームとかみあうウォームホイールの歯面に対するものである。一般に、ウォームホイールの歯面の入口側に歯当りが偏ることは好ましくなく、歯すじ方向の歯当りの中心が多少出口側に寄り、入口隙間を確保できる状態が望ましい(図6-3参照)

図6-3 ウォームホイールの歯当り

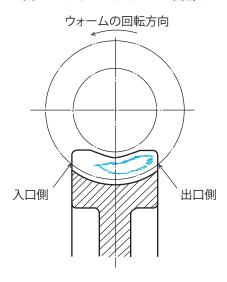



図6-4 ウォームギヤの入口隙間

{和栗, 上野, ウォームギヤの潤滑に関する二三の問題, 機械の研究, 8巻, 4号 (1956)}

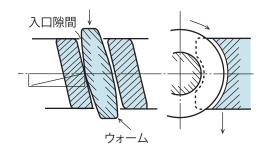
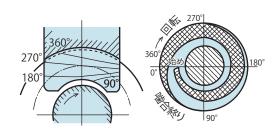
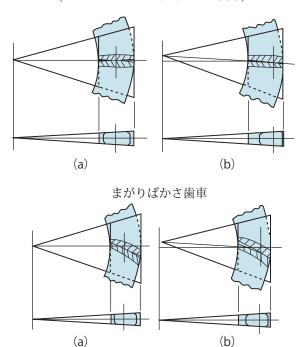
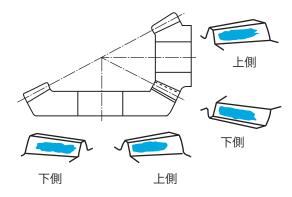



図6-5 ウォームギヤ (2条) の接触線と ウォームの当り (膨みがないとき)

引用文献は図6-4と同じものです。



図6-6 クラウニングつきかさ歯車のかみ合い {グリーソン社, INSTALLATION OF BEVEL GEARS (1965)}

> コニフレックスベベルギヤ (クラウニングつきすぐばかさ歯車)



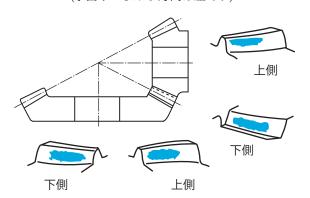

図はともに(a)が正常な位置での組み立てで,(b)は小歯車の円すい頂点の位置がずれて組み立てられたものです。歯当り位置の変化に注意して見てください。

図6-7 かさ歯車のよい歯当り



まがりばかさ歯車

(小歯車のまがり方向は左です)



下記、表6-1~表6-4では、歯車の精度等級によって推奨される歯当たりの区分を表します。可能な限りこのような歯当たりになるようにしてください。

表6-1 円筒歯車の歯当りの割合

| 区分 | 歯当りの割合             |                   |  |  |  |  |  |  |  |  |
|----|--------------------|-------------------|--|--|--|--|--|--|--|--|
| 区ガ | 歯すじ方向              | 歯たけ方向             |  |  |  |  |  |  |  |  |
| Α  | 有効歯すじの長さの<br>70%以上 | 有効歯形の長さの<br>40%以上 |  |  |  |  |  |  |  |  |
| В  | 有効歯すじの長さの<br>50%以上 | 有効歯形の長さの<br>30%以上 |  |  |  |  |  |  |  |  |
| С  | 有効歯すじの長さの<br>35%以上 | 有効歯形の長さの<br>20%以上 |  |  |  |  |  |  |  |  |

### 表6-3 かさ歯車の歯当りの割合

| 区分 | 歯当りの割合             |                   |  |  |  |  |  |  |  |  |  |
|----|--------------------|-------------------|--|--|--|--|--|--|--|--|--|
| 巨刀 | 歯すじ方向              | 歯たけ方向             |  |  |  |  |  |  |  |  |  |
| Α  | 有効歯すじの長さの<br>50%以上 | 有効歯形の長さの<br>40%以上 |  |  |  |  |  |  |  |  |  |
| В  | 有効歯すじの長さの<br>35%以上 | 有効歯形の長さの<br>30%以上 |  |  |  |  |  |  |  |  |  |
| С  | 有効歯すじの長さの<br>20%以上 | 有効歯形の長さの<br>20%以上 |  |  |  |  |  |  |  |  |  |

表6-2 円筒ウォームギヤの歯当りの割合

| 区分 | 歯当りの割合             |                   |  |  |  |  |
|----|--------------------|-------------------|--|--|--|--|
|    | 歯すじ方向              | 歯たけ方向             |  |  |  |  |
| Α  | 有効歯すじの長さの<br>50%以上 | 有効歯形の長さの<br>40%以上 |  |  |  |  |
| В  | 有効歯すじの長さの<br>35%以上 | 有効歯形の長さの<br>30%以上 |  |  |  |  |
| С  | 有効歯すじの長さの<br>20%以上 | 有効歯形の長さの<br>20%以上 |  |  |  |  |

#### 表6-4 歯当り区分と精度等級との対応

| 歯当り<br>の区分 | 円筒歯車の精度等級<br>旧JIS B 1702-1960 | かさ歯車の精度等級<br>JIS B 1704-1973 |
|------------|-------------------------------|------------------------------|
| Α          | 1,2                           | 1,2                          |
| В          | 3, 4                          | 3, 4                         |
| С          | 5, 6                          | 5, 6                         |

### 7. 各種歯車の効率

#### (歯車のみの参考値)

| 歯車の  | 種類 | 歯車の効率      |  |
|------|----|------------|--|
| 平歯車  |    | 97 - 99%   |  |
| はすば  | 歯車 | 97 - 99%   |  |
| かさ歯  | 車  | 96 - 99%   |  |
| ウォーム | 1条 | 45 - 55% * |  |
| ギヤ   | 2条 | 55 - 65% * |  |

\*当社規格品の数値です。

### 8. 歯車の潤滑

### (1) 歯車の潤滑の目的

歯車の潤滑の目的は最終的に歯車の寿命をのばすことにあります。具体的な効果を以下に示します。

- ①歯面の金属接触を避ける
- ② 歯面の摩擦によって発生する熱を取り去る
- ③ 振動・騒音を少なくする

歯面への潤滑不足が生じると、先ず振動・騒音が高くなり、やがて温度上昇に伴った焼付き(カジリ)などによって、軸受の損傷へとつながります。この様な事故を起こさないためには、適正な潤滑油を適正な方法で適正な量を歯車に潤滑することが必要です。

### (2) 歯車の潤滑方法

歯車の潤滑方法は、以下の3種類があります。

- ① グリース潤滑法
- ② はねかけ潤滑法(油浴またはスプラッシュ潤滑法)
- ③ 強制潤滑法

に分類されます。

これらは、歯車の種類、周速、面圧(歯面に加わる負荷)、歯面の仕上げ状態、材料の硬さ、材料の組み合わせにより選定する必要がありますが、一般には歯車の周速を目安にして選定されています。

表8-1に歯車の周速による潤滑方法の選定の目安を示します。

#### 8-1 (1) 平, はすば歯車及びかさ歯車



#### 8-1 (2) ウォームおよびハイポイドギヤ

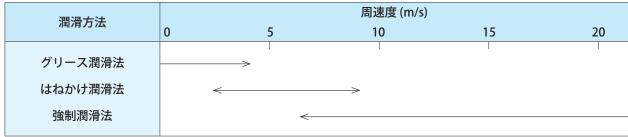
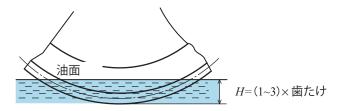
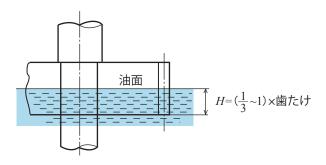



表8-1 歯車の周速による潤滑方法の選定の目安

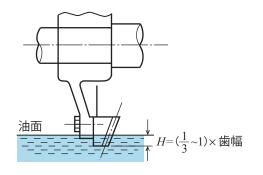
### 周速度の計算方法


周速度 $(m/s) = \frac{\pi \times \mathcal{C} y + \mathcal{P}(mm) \times \text{回転数}(min^{-1})}{1000 \times 60}$ 

※各数値の単位にご注意ください。


### (3) 適正油量

#### ① はねかけ潤滑法(油浴またはスプラッシュ潤滑法)


歯車が油面に浸る量は歯車の種類により異なります。浸る量が大きいと、かくはん抵抗や風損(チャーニング損失)が増加します。図8-1に歯車が油中に浸る量の目安を示します。



(a) 平歯車およびはすば歯車 (水平軸)



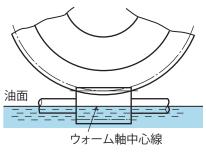
(b) 平歯車およびはすば歯車(垂直軸)



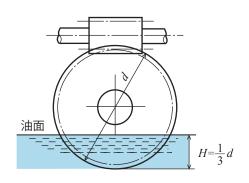
### (c) かさ歯車およびハイポイドギヤ

### 図8-1 歯車が油中に浸る量

#### ② 強制潤滑法


#### 吹き付け油量:

一般に、歯車のかみ合い部に対して、そこを通る油の温度上昇が8 $^{\circ}$ とを超えない程度とされていますが、歯幅1 $^{\circ}$ に対して、低速では0.5 $^{\prime}$ /min、高速では1 $^{\prime}$ /minを目安にします。高速では、次の経験式を目安に用いることがあります。


油量  $(l/min) = 0.6 + 2 \times 10^{-3} \cdot mv$ 

#### ここに,

*m*:モジュール (mm) υ:ピッチ円周速 (m/s)



(d<sub>1</sub>) ウォームギヤ (下ウォーム)



(d<sub>2</sub>) ウォームギヤ (上ウォーム)

### 吹き付け方法:

歯面に直角な方向で吹き付け、かみ合い部より少し 手前が良いとされています。高速では、かみ合い終わ りの方向から吹き付けることもあります。

温度上昇を防ぐために、回収された潤滑油は冷却することが必要です。

### (4) ポリアセタールギヤについて

プラスチック歯車の強度はの歯車と比較しますと 金属製の歯車の約 $1/6\sim1/9$ ぐらいになります。また、温度、湿度など自然現象の外的要因による影響がありますので、外的条件も合わせてご検討ください。

#### 表8-2 周速またはすべり速度限界

| 潤滑                |     | 無潤滑 | 油潤滑 |
|-------------------|-----|-----|-----|
| 平歯車および<br>かさ歯車の周速 | m/s | 6   | 12  |
| ウォームギヤの<br>すべり速度  | m/s | 1   | 2.5 |

最低使用限界温度 -38℃

#### プラスチック歯車のバックラッシ

プラスチックは熱伝導率が金属と比較して非常に小さく、熱膨張係数は金属よりもかなり大きいため、寸法変化が起こります。よってプラスチック同志の歯車のかみ合いのバックラッシは、金属同士の歯車のそれよりも多くなるように歯切りをしています。

### (5) 歯車材の組み合わせについて

プラスチック歯車同士の組み合わせでは、ポリアセタールと金属の組み合わせの時の材料係数を1とするとポリアセタールとポリアセタールの組合せの場合0.75となりポリアセタールと金属に比べて75%の強度となります。

歯車の組み合わせはポリアセタールと金属の組み合せが良いとされていますが、このとき注意しなければならない点は、金属歯車の歯面の面粗さで、歯面粗さが粗いとポリアセタール歯車のほうが摩耗が多くなります。

したがって、ポリアセタール歯車とかみ合う金属歯車の歯面粗さは最大Ra1.6を目安としてください。

### 9. 騒音,振動の原因と対策

歯車を含んだ機械が回り始めると、必ず歯車のかみ合い音が聞こえます。歯車のかみ合う音は、500~5000Hzの人間の耳に感じやすい周波数で、たとえその音が小さくても、発生音の周波数成分や歯車が使われる環境によって不快に感じられることがあります。音のトラブルが発生すると、歯車は必ずその責めを負うことになります。しかし、音の原因は単に歯車だけではなく、装置全体の設計から潤滑油に至るまで多岐にわたっています。図9-1に、歯車騒音の原因と対策を示します。

この図より歯車騒音を低くするためには、次のことが考えられます。

- ① 歯車の精度、組立の精度を高める。→ (元凶対策)
- ② **歯車, 軸, 歯車箱は音の出にくい材質, 形状とする。→(音源対策)** (共振を避け, 減衰を早くする。)
- ③ 密閉して音を外に出さない。→ (遮断と遮へい)

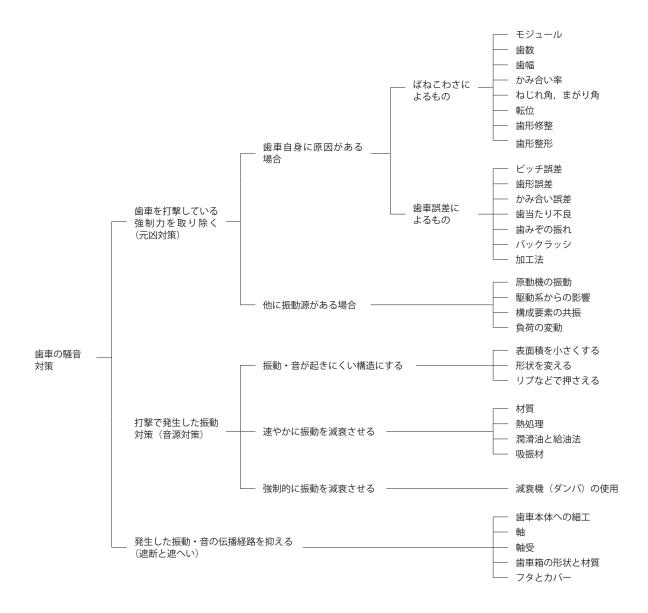



図9-1 歯車騒音の原因と対策

### 10. 周波数成分による音の原因解析(低周波数帯域)

騒音,振動の原因が歯車にある場合,周波数成分を分析すると,低い周波数帯域で図10-1のような周波数成分が現れます。これにより、音の原因となる誤差を見つけだすことができます。

歯車の局所異常がある場合、高周波帯域での分析が正確とされていますが、ここでは説明を省略します。

図10-1 歯車から発生する振動(低周波)

| 歯車の状態           | 時間領域                                   | 周波数領域                                                                            |
|-----------------|----------------------------------------|----------------------------------------------------------------------------------|
| 正常              | <b>√</b> ✓✓✓✓✓                         | $ \begin{array}{c c} P(fr) & & \\ \hline P(fm) & \\ \hline fr & fm \end{array} $ |
| 歯車軸<br>ミスアライメント | <b>₩</b>                               | P(fm) $P(fm+fr)$ $fr$ $p(fm-fr)$ $fm-fr$ $fm+fr$                                 |
| 偏芯              | AAAAAA                                 | $ \begin{array}{c c} P(fr) & P(fm) \\  & & \\ fr & fm \end{array} $              |
| 局所異常            | ~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | $P(fr) \qquad P(fm)$ $P(2fr) \qquad P(3fr)$ $P(3fr)$                             |
| 摩耗              | ₩₩₩                                    | P(fm) $P(2fm)$ $P P(3fm)$ $fm 2fm 3fm$                                           |
| ピッチ誤差           | Amp.Mod.+Freg-Mod                      | $P(fm) \qquad P(2fm)$ $fr$                                                       |

 $f_m$ :かみあい周波数

 $f_r$ :回転周波数

 $f_m = z \times \frac{n}{60}$ 

 $f_r = \frac{n}{60}$ 

z : 歯数

n:回転数

本カタログに記載されております許容伝達動力表「曲げ強さ」「歯面強さ」「許容ウオームホイールトルク歯面強さ」のテーブルはJGMAの式(日本歯車工業会規格)を採用しております(樹脂歯車を除く)。ただし、歯車の種類、モジュールサイズにより、モジュールサイズにより、JGMAの式の適用外であるため参考値になります。なお、歯車の種類とモジュールサイズの区分は表11-1をご参照ください。

表11-1 JGMAの式の適用範囲抜粋

| 歯車の種類   | JGMA 規格 No   | モジュールサイズ                    | ピッチ円直径               |  |
|---------|--------------|-----------------------------|----------------------|--|
| 平歯車     | JGMA401 — 01 | 1.5 ∼ 25mm                  | ピッチ円直径 25 ~ 3200mm   |  |
| はすば歯車   | JGMA402 — 01 | 1.5 ~ 25fffff               |                      |  |
| すぐば傘歯車  | JGMA403 — 01 | 外端正面モジュール 1.5 ~ 25mm        | 外端ピッチ円直径 1600mm 以下   |  |
| まがりば傘歯車 | JGMA404 — 01 | 外端正国モンユール 1.3 ~ 23HIIII<br> | 外端ピッチ円直径 1000mm 以下   |  |
| ウオームギヤ  | JGMA405 — 01 | 軸方向モジュール 1.0 ~ 25mm         | ホイールのピッチ円直径 900mm 以下 |  |

### (1) 平歯車およびはずば歯車の曲げ強さ、歯面強さ

11. 許容伝達動力表の解説

|               | 材質                 | SCM435                  | S4                                      | 5C                       | (1) SUS304 (1) C3604B   |                        | アセタール                  |
|---------------|--------------------|-------------------------|-----------------------------------------|--------------------------|-------------------------|------------------------|------------------------|
| 項目            |                    | 高周波焼入れ                  | _                                       | 高周波焼入れ                   | (') 303304              | (·) C3004B             | ノセダール                  |
| 使用計算式         |                    | 平歯車                     | 平歯車およびはすば歯車の曲げ強さ計算式 JGMA 401 – 01       |                          |                         |                        |                        |
| 使用可异式         |                    | 平歯車                     | 平歯車およびはすば歯車の歯面強さ計算式 JGMA 402 – 01       |                          |                         |                        |                        |
| 相手歯車          |                    |                         | 同一國                                     | 数および同一材質                 | Ī                       |                        | _                      |
| 許容曲げ応力        | $: \sigma F_{lim}$ | 36.5kgf/mm <sup>2</sup> | 21.0kgf/mm <sup>2</sup>                 | 25.0kgf/mm <sup>2</sup>  | 10.5kgf/mm <sup>2</sup> | 4.2kgf/mm <sup>2</sup> | 3.4kgf/mm <sup>2</sup> |
| 許容ヘルツ応力       | $: \sigma H_{lim}$ | 121kgf/mm <sup>2</sup>  | _                                       | 106.5kgf/mm <sup>2</sup> | _                       | _                      | _                      |
| 寿命期間中に歯がかみあう[ | 回数                 |                         |                                         | 107回以上                   |                         | $(K_L=1.0)$            | _                      |
| 原動機側からの衝撃     |                    |                         |                                         | 均一負荷                     |                         |                        | _                      |
| 被動機械からの衝撃     |                    |                         | F                                       | 早程度の衝撃                   |                         | (K <sub>0</sub> =1.25) | _                      |
| 潤滑方式および油の動粘度  |                    |                         | 油潤滑 100 cSt (50℃) (Z <sub>L</sub> =1.0) |                          |                         |                        | _                      |
| 歯車の支持方法       |                    | 両軸受けに対称に両側支持            |                                         |                          |                         | _                      |                        |
| 歯元曲げ破損に対する安全率 | : SF               | 1.2                     |                                         |                          |                         | _                      |                        |
| 歯面強さに対する安全率   | : SH               | 1.15                    |                                         |                          |                         | _                      |                        |
| 荷重方向          |                    |                         | ·                                       | 荷重の方向は一流                 | 定                       |                        |                        |

荷重方向が正逆転の場合 (ラックピニオン含む) と 中間ギヤは各種歯車の許容伝達表の値の2/3となります。 許容伝達動力表の歯面強さは 遊び歯車や大歯車と2ヶ所でかみ合う小歯車(中間歯車)には適用できません。 注()JGMA401-01とJGMA402-01に規定されていない規格はJGMA6101-01とJGMA6102-01に準拠しております。

本カタログに記載されております許容伝達表動力表の曲げ強さに対して回転数 n = 100[min¹]における許容伝達トルク値[N.m]を各表に表示しております。(表示範囲:モジュールm1-5,材質S45C)

### (2) かさ歯車の曲げ強さ、歯面強さ

|                | 材質                 | SCM435                                | SCM440                                | S45C                    |                         |                                |
|----------------|--------------------|---------------------------------------|---------------------------------------|-------------------------|-------------------------|--------------------------------|
| 項目             | <b>初</b> 貝         | 高周波焼入れ                                | 歯研、<br>高周波焼入れ                         | _                       | 高周波焼入れ                  | (²) SUS304                     |
| 使用計算式          |                    | t                                     | かさ歯車の曲げ強さ計算式 JGMA 403 - 01 (日本語 以降同様) |                         |                         |                                |
| 使用可穿式          |                    | t                                     | いさ歯車の歯面強                              | さ計算式 JGM                | IA 404 — 01(日           | 本語 以降同様)                       |
| 相手歯車           |                    |                                       |                                       | 選定された商                  | 品の相手歯車                  |                                |
| 許容曲げ応力         | $: \sigma F_{lim}$ | 31.0kgf/mm <sup>2</sup>               | 31.0kgf/mm <sup>2</sup>               | 19.0kgf/mm <sup>2</sup> | 22.0kgf/mm <sup>2</sup> | 10.5kgf/mm <sup>2</sup>        |
| 許容ヘルツ応力        | $: \sigma H_{lim}$ | 109.0kgf/mm <sup>2</sup>              | 115.0kgf/mm <sup>2</sup>              | 54.0kgf/mm <sup>2</sup> | 85.0kgf/mm <sup>2</sup> | _                              |
| 寿命期間中に歯がかみあう   | 回数                 | 107回以上                                |                                       |                         | $(K_L=1.0)$             |                                |
| 原動機側からの衝撃      |                    |                                       |                                       | 均一1                     | <br>負荷                  |                                |
| 被動機械からの衝撃      |                    |                                       |                                       | 中程度は                    | の衝撃                     | ( <i>K</i> <sub>0</sub> =1.25) |
| 潤滑方式および油の動粘度   |                    |                                       |                                       | 油潤滑 100                 | cSt (50℃)               | $(Z_L=1.0)$                    |
| 軸、歯車箱などの剛性     |                    |                                       |                                       | 普                       | 通                       |                                |
| 歯車の支持状態        |                    | 両歯車片持支持                               |                                       |                         |                         |                                |
|                |                    | $(K_{M\beta}=1.8)$ $(K_{M\beta}=2.1)$ |                                       |                         | (Кмβ=2.1)               |                                |
| 歯元曲げ破損に対する信頼度係 | 数 :K <sub>R</sub>  | 1.2                                   |                                       |                         |                         |                                |
| 歯面強さに対する信頼度係数  | 数 : C <sub>R</sub> | 1.15                                  |                                       |                         |                         |                                |
| 荷重方向           |                    |                                       |                                       | 荷重の方                    | 向は一定                    |                                |

荷重方向が正逆転の場合は各種歯車の許容伝達表の値の2/3となります。

注(<sup>9</sup>)JGMA403-01とJGMA404-01に規定されていない規格はJGMA6101-01とJGMA6102-01に準拠しております。

### (3) 円筒ウオームギヤ歯面強さ

| ホイ 項目          | ホイールの材質 項目         |                                            | C3604B FC200<br>黄銅 ねずみ鋳鉄 |             |
|----------------|--------------------|--------------------------------------------|--------------------------|-------------|
| 使用計算式          |                    | 円筒ウオ                                       | ームギヤの強さ計算式 JGMA          | 405-01      |
| 歯面強さに対する許容応力係数 | $: \sigma F_{lim}$ | 0.42                                       | 0.63                     | 0.56        |
| 期待寿命時間         |                    | 26,000 時間                                  |                          |             |
| 油潤滑            |                    | 歯車用極圧添加剤の入った適正な粘土の潤滑油を使用 (Zi=              |                          |             |
| 潤滑方式           |                    |                                            | 油浴潤滑                     | $(Z_M=1.0)$ |
| 歯当たり           |                    | JIS B 1741( 歯当たり 日本語 ) の区分 A に相当する歯当たり (Ka |                          |             |
| 起動状況           |                    | 起動時のトルクが定格トルクの200%以下で1時間あたりの起動回数は2回未満 (Ks= |                          |             |
| 原動機側からの衝撃      |                    | 均一負荷                                       |                          |             |
| 被動機械からの衝撃      |                    |                                            | 均一負荷                     | $(K_h=1.0)$ |

荷重方向が正逆転の場合は各種歯車の許容伝達表の値の2/3となります。

注(+)JGMA403-01とJGMA404-01に規定されていない規格はJGMA6101-01とJGMA6102-01に準拠しております。

KG CALMET for Window(歯車諸元計算、強度計算ソフト 日本語)を使用する事により容易に計算する事が出来ます。

### 12. 許容伝達動力表の曲げ強さの使用方法例

規格平歯車の許容伝達トルクを求める 平歯車の使用条件より規格歯車を選定する

### 計算例 1. 規格歯車の許容伝達トルク:T[N.m]を求める。

- (1) 規格歯車の商品記号 S2S 40B-2016 を使用する場合
  - 1) モジュール m=2 3) 歯幅 20[mm]
  - 2) 歯数 z=40 4) 穴径 16[mm]
- (2) 歯車の使用条件
  - 1) 平歯車の歯数比 u=1:1
  - 2) 平歯車の回転数 n=100[min<sup>-1</sup>]
  - 3) 平歯車の強度計算に関する条件 (JGMA401-01 を参照)
    - a) 歯車は歯車箱内で油浴潤滑とする。
    - b) 歯車軸の軸受けは歯車の両側で支持する。
    - c) 原動機側から歯車に均一負荷を受ける。
    - d) 被動機械から歯車に中程度以下の衝撃を受ける。
    - e) 歯車が寿命期間中にかみ合う回数は 10<sup>7</sup> 回以上とする。
- (3) カタログの許容伝達動力表 (kW) 曲げ強さにより許容伝達トルクを求める。
  - 1) (1) (2) の条件にてカタログの許容伝達動力表 (kW) 曲げ強さより数値を読み取る。 KW=1.61[kW]
  - 2) 動力 kW[kW] をトルク [N.m] に換算する

T=9549.7 
$$\frac{kW}{n}$$
 n=100 より

$$T=9549.7 \times \frac{1.61}{100} = 153.75[\text{N.m}]$$

よって選定した規格歯車 S2S 40B-2016 の許容伝達トルクは T=153.75[N.m] となります。 この歯車は以上の使用条件の場合、入力トルク T=153.75[N.m] までの範囲でご使用いただけます。

### 計算例 2. 平歯車の条件により規格歯車を選定する。

(1) 歯車の使用条件(お客様の仕様)

1) 平歯車に作用する最大の呼びトルク T=142 [N.m](安全率を含む)

2) 平歯車の回転数n=100 [min-1]3) 平歯車の歯幅b=10-30 [mm]4) 平歯車の軸間距離a=70-100[mm]

5) 平歯車の歯数比 u=1:1

6) 平歯車の強度計算に関する条件 (JGMA401-01 を参照)

a) 歯車は歯車箱内で油浴潤滑とする。

b) 歯車軸の軸受けは歯車の両側で支持する。

c) 原動機側から歯車に均一負荷を受ける。

d) 被動機械から歯車に中程度以下の衝撃を受ける.

e) 歯車が寿命期間中にかみ合う回数は 10<sup>7</sup> 回以上とする。

(2) 平歯車に作用する軸トルク: T[N.m]を許容伝達動力表(kW)曲げ強さの動力: kW[kW]に換算する。

$$kW = \frac{T.n}{9549.7} = \frac{142 \times 100}{9549.7} = 1.487[kW]$$

(3) 規格歯車より選定する

1) 平歯車の選定条件

a) モジュール m=2 とする(例)

b) 歯数 中心距離:a=70-100 [mm]

歯数比 u=1:1

より 35-50[枚]の間で検討する。

c) 歯幅 b=10-30[mm]

d) 回転数 n=100[min<sup>-1</sup>]

e) 動力 kW=1.487[kW]

2) 平歯車の選定。

a) カタログより平歯車 モジュール: m = 2.0 歯数: z=35-50 [枚] のページを参照

b) 許容伝達動力表 (kW) 曲げ強さの表より、

回転数 n=100 [mim-1] の欄を参照する

動力 kW=1.487 [kW] 以上の数値となる歯数および歯幅を検索する。

以上により

歯数:z=38[枚] 歯幅:b=20[mm] 材質:S45Cの条件にて

許容伝達動力: kW=1.51 [kW] 表より

呼び動力 : kW=1.487 kW] 計算結果より (許容伝達動力) ≧ (呼び動力) となる事がわかる

c) 該当規格歯車商品記号

S2S 38B-2016 以上のサイズが推奨されました。

#### 動力の換算式

1) トルクを求める

*T*:トルク [N・m]

$$T = 9549.7 \frac{kW}{n} \Leftrightarrow kW = \frac{T \cdot n}{9549.7}$$

*T*:トルク [kgf・m]

$$T = 973.8 \frac{\text{kW}}{n} \Leftrightarrow \text{kW} = \frac{T \cdot n}{973.8}$$

*T*:トルク [kgf・m]

$$T = \frac{Ft \cdot r}{1000} \quad \Leftrightarrow \quad Ft = \frac{1000 \cdot T}{r}$$

2) SI 単位への換算

 $1[kgf \cdot m] = 9.80665[N \cdot m]$  $1[W] = 1[N \cdot m/s]$ 

ここに n : 回転速度 [min-1]r : 基準円半径 [mm]

(転位歯車の場合はかみ合いピッチ円半径)

T : トルク [N・m] kW: 動力 [kW]

Ft: 正面におけるかみ合いピッチ円上の円周力 [N]

### 13. SI 単位への切換えで問題になる単位の換算率表

|     | N                    | dyn                        | kgf                         |
|-----|----------------------|----------------------------|-----------------------------|
|     | 1                    | 1 × 10⁵                    | 1.019 72 × 10 <sup>-1</sup> |
| ) Л | 1 × 10 <sup>-5</sup> | 1                          | 1.019 72 × 10 <sup>-6</sup> |
|     | 9.806 65             | 9.806 65 × 10 <sup>5</sup> | 1                           |

|    | Pa                        | bar                         | kgf/cm <sup>2</sup>         | atm                         | mmH <sub>2</sub> O        | mmHg 又は Torr                |
|----|---------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------|-----------------------------|
|    | 1                         | $1 \times 10^{-5}$          | 1.019 72 × 10 <sup>-5</sup> | 9.869 23 × 10 <sup>-6</sup> | $1.01972 \times 10^{-1}$  | 7.500 62 × 10 <sup>-3</sup> |
|    | 1 × 10 <sup>5</sup>       | 1                           | 1.019 72                    | 9.869 23 × 10 <sup>-1</sup> | $1.019\ 72 \times 10^4$   | 7.500 62 × 10 <sup>2</sup>  |
| 圧力 | $9.806\ 65 \times 10^{4}$ | 9.806 65 × 10 <sup>-1</sup> | 1                           | 9.678 41 × 10 <sup>-1</sup> | $1 \times 10^4$           | 7.355 59 × 10 <sup>2</sup>  |
|    | $1.013\ 25 \times 10^{5}$ | 1.013 25                    | 1.033 23                    | 1                           | $1.033\ 23 \times 10^{4}$ | 7.600 00 × 10 <sup>2</sup>  |
|    | 9.806 65                  | 9.806 65 × 10 <sup>-5</sup> | 1 × 10 <sup>-4</sup>        | 9.678 41 × 10 <sup>-5</sup> | 1                         | 7.355 59 × 10 <sup>-2</sup> |
|    | $1.333\ 22 \times 10^{2}$ | $1.333\ 22 \times 10^{-3}$  | $1.35951 \times 10^{-3}$    | 1.315 79 × 10 <sup>-3</sup> | 1.359 51 × 10             | 1                           |

注 IPa=IN/m²

|    | Pa                         | Mpa or N/mm <sup>2</sup>    | kgf/mm²                  | kgf/cm <sup>2</sup>         |
|----|----------------------------|-----------------------------|--------------------------|-----------------------------|
|    | 1                          | $1 \times 10^{-6}$          | $1.01972 \times 10^{-7}$ | 1.019 72 × 10 <sup>-5</sup> |
| 応力 | 1 × 10 <sup>6</sup>        | 1                           | $1.01972 \times 10^{-1}$ | 1.019 72 × 10               |
|    | 9.806 65 × 10 <sup>6</sup> | 9.806 65                    | 1                        | $1 \times 10^{2}$           |
|    | 9.806 65 × 10 <sup>4</sup> | 9.806 65 × 10 <sup>-2</sup> | $1 \times 10^{-2}$       | 1                           |

|     | Pa∙s                 | сР                  | Р                    |
|-----|----------------------|---------------------|----------------------|
| 业⊢中 | 1                    | $1 \times 10^{3}$   | 1 × 10               |
| 粘度  | 1 × 10 <sup>-3</sup> | 1                   | 1 × 10 <sup>-2</sup> |
|     | 1 × 10 <sup>-1</sup> | 1 × 10 <sup>2</sup> | 1                    |

注  $IP = Idyn \cdot s/cm^2 = Ig/cm \cdot S$ ,  $IPa \cdot s = IN \cdot s/m^2$ ,  $ICP = ImPa \cdot s$ 

### 14. 歯車記号と用語

### KG ギヤは JIS 記号を採用しています

歯車の図面に関する各部寸法記号は、多岐にわたりますがKGギヤではJIS規格、歯車の参考文献に使われている記号を採用しています。

### 歯車記号と用語

歯車の計算に使う歯車記号については、JIS B0121-1999(歯車記号)に規定されています。歯車用語については、JIS B0102(歯車用語)に規定されています。

| 直線上及び円周上関係                                    | Δ, C, N                       |                                         |
|-----------------------------------------------|-------------------------------|-----------------------------------------|
| 用                                             | 語                             | 記号                                      |
| 中心距離                                          | center distance               | а                                       |
| 円ピッチを総称する場合                                   | when you call pitch           | P                                       |
| 基準ピッチ                                         | reference pitch               | P                                       |
| 正面ピッチ                                         | transverse pitch              | $P_t$                                   |
| 歯直角ピッチ                                        | normal pitch                  | $P_n$                                   |
| 軸方向ピッチ                                        | axial pitch                   | $P_x$                                   |
| 法線ピッチ                                         | base pitch                    | $P_b$                                   |
| 正面法線ピッチ                                       | transverse base pitch         | $P_{bt}$                                |
| 歯直角法線ピッチ                                      | normal base pitch             | $P_{bn}$                                |
| <u> </u>                                      | tooth depth                   | h                                       |
| 歯末のたけ                                         | addendum                      | h <sub>a</sub>                          |
| 歯元のたけ                                         | dedendum                      | h <sub>f</sub>                          |
| キャリパ歯たけ                                       |                               | h h                                     |
|                                               | chordal addendum              | $\begin{pmatrix} n \\ h' \end{pmatrix}$ |
| かみ合い歯たけ                                       | working tooth depth           |                                         |
| 歯厚を総称する場合                                     | when you call tooth thickness | S                                       |
| 歯厚                                            | tooth thickness               | S                                       |
| 基礎円上の歯厚                                       | base circle                   | Sb                                      |
| 弦歯厚                                           | chordal tooth thickness       | S                                       |
| またぎ歯厚                                         | sector span                   | W                                       |
| 歯溝の幅                                          | spacewidth                    | е                                       |
| 頂げき                                           | bottom clearance              | С                                       |
| 円周方向バックラッシ                                    | circumferential backlash      | $j_i$                                   |
| 法線方向バックラッシ                                    | normal backlash               | jn                                      |
| 歯幅                                            | facewidth                     | b                                       |
| 有効歯幅                                          | effective facewidth           | b'又は bw                                 |
| リード                                           | lead                          | $P_z$                                   |
| かみ合い長さ                                        | length of path of contact     | $g_a$                                   |
| 近寄りかみ合い長さ                                     | length of approach path       | $g_f$                                   |
| 遠のきかみ合い長さ                                     | length of recess path         | $g_{\alpha}$                            |
| 重なりかみ合い長さ                                     | overlap length                | $g_{\beta}$                             |
| 直径を総称する場合                                     | when you call diameter        | d                                       |
| 基準円直径                                         | reference diameter            | d                                       |
| かみ合いピッチ円直径                                    | working pitch diameter        | d'又は d <sub>w</sub>                     |
| 歯先円直径                                         | tip diameter                  | $d_a$                                   |
| 基礎円直径                                         | base diameter                 | $d_b$                                   |
| 歯底円直径                                         | root diameter                 | $d_f$                                   |
| -                                             | when you call radius          | r                                       |
| ・ 基準円半径                                       | ,                             | r                                       |
| 基準的主任<br>かみ合いピッチ円半径                           | reference radius              | r , 又は r <sub>w</sub>                   |
|                                               | working pitch radius          |                                         |
| 歯先円半径<br>************************************ | tip radius                    | r <sub>a</sub>                          |
| 基礎円半径                                         | base radius                   | rb                                      |
| 歯底円半径                                         | root radius                   | ľf                                      |
| 曲率半径<br>====================================  | curvature radius              | ρ                                       |
| 円すい距離を総称する場合                                  | when you call cone distance   | R                                       |
| 円すい距離                                         | cone distance                 | Re                                      |
| 中央円すい距離                                       | mean cone distance            | $R_m$                                   |
| 内端円すい距離                                       | inner cone distance           | $R_i$                                   |
| 背円すい距離                                        | back cone distance            | $R_{\nu}$                               |
| 組立距離                                          | locating distance             | A                                       |

### 角度関係寸法

| 用           |                                  | 記号                        |
|-------------|----------------------------------|---------------------------|
| 圧力角を総称する場合  | when you call pressure angle     | α                         |
| 基準圧力角       | reference pressure angle         | α                         |
| かみ合い圧力角     | working pressure angle           | α'又はα <sub>w</sub>        |
| 工具圧力角       | cutter pressure angle            | $\alpha_o$                |
| 正面圧力角       | transverse pressure angle        | $\alpha_t$                |
| 歯直角圧力角      | normal pressure angle            | $\alpha_n$                |
| 軸平面圧力角      | axial pressure angle             | $\alpha_x$                |
| ねじれ角を総称する場合 | when you call helix angle        | β                         |
| 基準円筒ねじれ角    | reference cylinder helix angle   | β                         |
| 歯先円筒ねじれ角    | tip cylinder helix angle         | $\beta_a$                 |
| 基礎円筒ねじれ角    | base cylinder helix angle        | $\beta_b$                 |
| 進み角を総称する場合  | when you call lead angle         | γ                         |
| 基準円筒進み角     | reference cylinder lead angle    | γ                         |
| 歯先円筒進み角     | tip cylinder lead angle          | $\gamma_a$                |
| 基礎円筒進み角     | base cylinder lead angle         | $\gamma_b$                |
| 軸角          | shaft angle                      | $\frac{\gamma_b}{\Sigma}$ |
| 円すい角を総称する場合 | when you call angle              | δ                         |
| ピッチ角        | pitch angle                      | δ                         |
| 歯先角         | tip angle                        | $\delta_a$                |
| 歯底角         | root angle                       | $\delta_f$                |
| 歯末角         | addendum angle                   | $\theta_a$                |
| 歯元角         | dedendum angle                   | $\theta_f$                |
| 正面接触角       | transverse angle of transmission | $\phi_{\alpha}$           |
| 重なり角        | overlap angle                    | $\phi_{\beta}$            |
| 全接触角        | total angle of transmission      | $\phi_{\gamma}$           |
| 冠歯車の角度ピッチ   | angle pitch of crown gear        | τ                         |
| インボリュートα    | involute $\alpha$                | inv α                     |

### 歯数及び比率

| 四級人人の七十   |   |                                          |                        |
|-----------|---|------------------------------------------|------------------------|
|           | 用 | 語                                        | 記号                     |
| 歯数        |   | number of teeth                          | Z                      |
| 相当平歯車歯数   |   | equivalent number of teeth               | $Z_V$                  |
| 条数又は小歯車歯数 |   | number of thread                         | <i>Z</i> 1             |
| 歯数比       |   | gear ratio                               | и                      |
| 速度伝達比     |   | transmission ratio                       | i                      |
| モジュール     |   | module                                   | m                      |
| 正面モジュール   |   | transverse module                        | $m_t$                  |
| 歯直角モジュール  |   | normal module                            | $m_n$                  |
| 軸方向モジュール  |   | axial module                             | m <sub>x</sub>         |
| かみ合い率     |   | contact ratio                            | $\varepsilon$          |
| 正面かみ合い率   |   | transverse contact ratio                 | $\mathcal{E}\alpha$    |
| 重なりかみ合い率  |   | overlap contact ratio                    | $\mathcal{E}\beta$     |
| 全かみ合い率    |   | total contact ratio                      | $\mathcal{E}_{\gamma}$ |
| 滑り率       |   | specific sliding                         | $\sigma$               |
| 角速度       |   | angular velocity                         | ω                      |
| 線速度       |   | linear velocity                          | ν                      |
| 回転数       |   | revolution per minute                    | n                      |
| 転位係数      |   | rack shift coefficient                   | x                      |
| 中心距離修正係数  |   | center distance modification coefficient | y                      |

### 15. ISO 規格と JIS 規格の整合化

#### はじめに

はじめにJIS規格のISOへの整合化に伴い、多くのJIS規格(Technical reportを含む)が 改訂や新規作成されつつあります。歯車に関するJIS規格およびJGMA規格(日本歯車工業会規格)についても順次改訂が行われますが このカタログ編集時はまだJIS規格およびJGMA規格のすべてが 改訂されたものとはいえず、廃止となった状態のままの規格もあります。しかしながら カタログを編集するにあたり、旧となったJIS規格やJGMA規格は不可欠なものです。そこで 極力新しいJIS 規格やJGMA規格を採用して編集いたしましたが、新規格の存在しないもの、または旧規格を使用しないと説明できない部分につきましては旧規格を使用し 規格番号の先頭に「旧」の文字を付記しました。また、新旧規格を並列表記している部分もございます。

弊社では ISO規格、JIS規格および JGMA規格などの改訂状況に注目しながらカタログの改訂を行いますが これらの規格が制定、改訂されても、本カタログに引用されている内容の改訂が出来ない場合がありますので ご了承ください。

### KG STOCK GEARS の精度について

これまで永年にわたり用いてきたJIS B1702:1995(平歯車及びはすば歯車の精度)が廃止され、JIS B 1702-1:1998(円 筒歯車―精度等級 第一部:歯車の歯面に関する誤差の定義および許容値)およびJIS B 1702-2: 1998(円筒歯車―精度等級 第2部:両歯面かみあい誤差および歯溝の振れの定義ならびに精度許容値)の2つの規定に分割されて制定されました。

これらの内容について旧JIS B 1702と比較すると、モジュールや基準円直径(旧JISでは基準ピッチ円直径)の区分が異なっている為に例えば旧JIS 4級が新JISでは何級に相当するかについて詳細に対応させることはできません。

#### おおよその目安として

新JIS精度等級=旧JIS精度等級+4(級)

といわれていますが 比較的歯数の小さい範囲または比較的歯数の大きい範囲では上記の目安が適用できない部分があります。

#### 新旧歯車用語の比較例

| JIS B0102 : 1999 | 旧 JIS B0102:1993 |
|------------------|------------------|
| 基準円直径            | 基準円ピッチ円直径        |
| 歯たけ              | 全歯たけ             |
| かみ合い歯たけ          | 有効歯たけ            |
| ピッチ角             | ピッチ円すい角          |
| 歯先角              | 歯先円すい角           |
| 歯底角              | 歯底円すい角           |
| (かさ歯車の)ねじれ角      | (かさ歯車の)ねじれ角      |
| (かさ歯車の)組立距離      | (かさ歯車の)位置決め距離    |
|                  |                  |

新JIS規格に変更されていない個所があります。

JIS B1702-1において定められた歯車の測定項目におけるKGギヤの精度等級は、およそ下記のとおりとなっております。

| 単一ピッチ誤差 | JIS B 1702-1 N7 級相当 |
|---------|---------------------|
| 累積ピッチ誤差 | JIS B 1702-1 N8 級相当 |
| 歯形誤差    | JIS B 1702-1 N8 級相当 |
| 歯溝の振れ   | JIS B 1702-1 N8 級相当 |

歯形誤差 歯溝の振れを常にJIS N8級に維持すればJIS N8級と言えるわけですが、規格歯車を経済的に製造する上で 問題が生じてまいります。従いまして現在では、JISの等級分類に従いKGギヤは『JIS N8級相当』となっております。

### 弊社規格品の精度等級

| 歯車の種類                        | シリーズ名    | 材質           | 精度                     |
|------------------------------|----------|--------------|------------------------|
| 歯研平歯車                        | SG       | SCM435 • 440 | JIS B1702-1 N5級        |
| <b>图</b> 图                   | SGR      | S45C         | JIS B1702-1 N6級        |
| 平歯車                          | S        | S45C         | JIS B1702-1 N8級        |
|                              |          | SUS304       | JIS B1702-1 N9級        |
| 平歯車・ヘリカルギヤ                   | S • H    | 黄銅 ※1        | JIS B1702-1 N9級        |
|                              |          | ポリアセタール      | JIS B1702-1 N9~N10級 ※2 |
| 歯研スパイラルマイタギヤ<br>歯研スパイラルベベルギヤ | MG<br>BG | SCM440       | JIS B1704 1 級          |
| 歯研スパイラルマイタギヤ                 | MGE      | SCM435 • 440 | JIS B1704 2 級          |
|                              |          | S45C         | JIS B1704 3 級          |
|                              |          | S45C(焼入れ品)   | JIS B1704 4 級          |
| マイタギヤ・ベベルギヤ                  | M • B    | SUS304       | JIS B1704 4 級          |
|                              |          | 黄銅           | JIS B1704 4 級          |
| WAAA TK. DO TKILIKA SAA      |          | ポリアセタール      | JIS B1704 5~6 級 ※2     |

st1 A1 形、B2 形は除きます。 st2 製作時の精度となります。素材の特性として、経年変化や熱膨張などにより精度の変化が起こります。

### 硬さ換算表

### 鋼のビッカース硬さに対する近似的換算値

|             |       | ブリネル硬で<br>球・荷重30 |                      |                                    | ロックウコ                             | こル硬さ (2)                            |                                     |                         | レスーパーフ <i>~</i><br>ヤモンド円錐 |                         |       | 引張強さ                                     | ビッカース         |
|-------------|-------|------------------|----------------------|------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|-------------------------|---------------------------|-------------------------|-------|------------------------------------------|---------------|
| ビッカース<br>硬さ | 標準球   | Hult-gren<br>球   | タングステン<br>カーバイド<br>球 | Aスケール<br>荷重60kgf<br>ダイヤモンド<br>円錐圧子 | Bスケール<br>荷重100kgf<br>径1/16in<br>球 | Cスケール<br>荷重150kgf<br>ダイヤモンド<br>円錐圧子 | Dスケール<br>荷重100kgf<br>ダイヤモンド<br>円錐圧子 | 15-N<br>スケール<br>荷重15kgf | 30-N<br>スケール<br>荷重30kgf   | 45-N<br>スケール<br>荷重45kgf | ショア硬さ | (近似値)<br>MPa<br>(kgf/mm²) <sup>(1)</sup> | ビッカース<br>硬さ荷重 |
| 940         | -     | -                | -                    | 85.6                               | -                                 | 68.0                                | 76.9                                | 93.2                    | 84•4                      | 75•4                    | 97    | -                                        | 940           |
| 920         | -     | -                | -                    | 85.3                               | -                                 | 67.5                                | 76.5                                | 93.0                    | 84.0                      | 74.8                    | 96    | -                                        | 920           |
| 900         | -     | -                | -                    | 85.0                               | -                                 | 67.0                                | 76•1                                | 92.9                    | 83.6                      | 74•2                    | 95    | -                                        | 900           |
| 880         | -     | -                | (767)                | 84.7                               | -                                 | 66.4                                | 75 • 7                              | 92.7                    | 83 · 1                    | 73.6                    | 93    | -                                        | 880           |
| 860         | -     | -                | (757)                | 84•4                               | -                                 | 65•9                                | 75•3                                | 92.5                    | 82.7                      | 73・1                    | 92    | -                                        | 860           |
| 840         | -     | -                | (745)                | 84 • 1                             | -                                 | 65.3                                | 74.8                                | 92.3                    | 82.2                      | 72 • 2                  | 91    | -                                        | 840           |
| 820         | -     | -                | (733)                | 83.8                               | -                                 | 64.7                                | 74.3                                | 92•1                    | 81.7                      | 71.8                    | 90    | -                                        | 820           |
| 800         | -     | -                | (722)                | 83 • 4                             | -                                 | 64.0                                | 73.8                                | 91.8                    | 81 • 1                    | 71.0                    | 88    | -                                        | 800           |
| 780         | -     | -                | (710)                | 83.0                               | -                                 | 63.3                                | 73.3                                | 91.5                    | 80.4                      | 70・2                    | 87    | -                                        | 780           |
| 760         | -     | -                | (698)                | 82.6                               | -                                 | 62.5                                | 72.6                                | 91•2                    | 79•7                      | 69•4                    | 86    | -                                        | 760           |
| 740         | -     | -                | (684)                | 82.2                               | -                                 | 61.8                                | 72 • 1                              | 91.0                    | 79•1                      | 68.6                    | 84    | -                                        | 740           |
| 720         | -     | -                | (670)                | 81.8                               | -                                 | 61.0                                | 71.5                                | 90.7                    | 78•4                      | 67.7                    | 83    | -                                        | 720           |
| 700         | -     | 615              | (656)                | 81.3                               | -                                 | 60 · 1                              | 70.8                                | 90.3                    | 77•6                      | 66.7                    | 81    | -                                        | 700           |
| 690         | -     | 610              | (647)                | 81 • 1                             | -                                 | 59.7                                | 70.5                                | 90 • 1                  | 77•2                      | 66.2                    | -     | -                                        | 690           |
| 680         | -     | 603              | (638)                | 80.8                               | -                                 | 59•2                                | 70 · 1                              | 89•8                    | 76.8                      | 65.7                    | 80    | -                                        | 680           |
| 670         | -     | 597              | 630                  | 80.6                               | -                                 | 58.8                                | 69.8                                | 89.7                    | 76•4                      | 65.3                    | -     | -                                        | 670           |
| 660         | -     | 590              | 620                  | 80.3                               | -                                 | 58.3                                | 69•4                                | 89.5                    | 75•9                      | 64.7                    | 79    | -                                        | 660           |
| 650         | -     | 585              | 611                  | 80.0                               | -                                 | 57.8                                | 69.0                                | 89.2                    | 75.5                      | 64 • 1                  | -     | -                                        | 650           |
| 640         | -     | 578              | 601                  | 79•8                               | -                                 | 57.3                                | 68.7                                | 89.0                    | 75 • 1                    | 63.5                    | 77    | -                                        | 640           |
| 630         | -     | 571              | 591                  | 79.5                               | -                                 | 56.8                                | 68.3                                | 88.8                    | 74.6                      | 63.0                    | -     | -                                        | 630           |
| 620         | -     | 564              | 582                  | 79•2                               | -                                 | 56.3                                | 67•9                                | 88•5                    | 74.2                      | 62•4                    | 75    | -                                        | 620           |
| 610         | -     | 557              | 573                  | 78•9                               | -                                 | 55.7                                | 67.5                                | 88•2                    | 73.6                      | 61.7                    | -     | -                                        | 610           |
| 600         | -     | 550              | 564                  | 78•6                               | -                                 | 55.2                                | 67.0                                | 88.0                    | 73 • 2                    | 61.2                    | 74    | -                                        | 600           |
| 590         | -     | 542              | 554                  | 78•4                               | -                                 | 54.7                                | 66.7                                | 87.8                    | 72.7                      | 60.5                    | -     | 2055 (210)                               | 590           |
| 580         | -     | 535              | 545                  | 78.0                               | -                                 | 54·1                                | 66•2                                | 87•5                    | 72 • 1                    | 59•9                    | 72    | 2020 (206)                               | 580           |
| 570         | -     | 527              | 535                  | 77•8                               | -                                 | 53.6                                | 65.8                                | 87•2                    | 71.7                      | 59.3                    | -     | 1985 (202)                               | 570           |
| 560         | -     | 519              | 525                  | 77•4                               | -                                 | 53.0                                | 65 • 4                              | 86.9                    | 71.2                      | 58.6                    | 71    | 1950 (199)                               | 560           |
| 550         | (505) | 512              | 517                  | 77•0                               | -                                 | 52.3                                | 64.8                                | 86.6                    | 70.5                      | 57•8                    | -     | 1905 (194)                               | 550           |
| 540         | (496) | 503              | 507                  | 76•7                               | -                                 | 51.7                                | 64•4                                | 86.3                    | 70.0                      | 57.0                    | 69    | 1860 (190)                               | 540           |
| 530         | (488) | 495              | 497                  | 76•4                               | -                                 | 51.1                                | 63.9                                | 86.0                    | 69.5                      | 56·2                    | -     | 1825 (186)                               | 530           |
| 520         | (480) | 487              | 488                  | 76・1                               | _                                 | 50.5                                | 63.5                                | 85.7                    | 69.0                      | 55.6                    | 67    | 1795 (183)                               | 520           |
| 510         | (473) | 479              | 479                  | 75.7                               | -                                 | 49.8                                | 62.9                                | 85 • 4                  | 68.3                      | 54.7                    | -     | 1750 (179)                               | 510           |
| 500         | (465) | 471              | 471                  | 75.3                               | -                                 | 49 • 1                              | 62.2                                | 85.0                    | 67.7                      | 53.9                    | 66    | 1705 (174)                               | 500           |
| 490         | (456) | 460              | 460                  | 74.9                               | -                                 | 48•4                                | 61.6                                | 84.7                    | 67 • 1                    | 53 • 1                  | -     | 1660 (169)                               | 490           |
| 480         | 448   | 452              | 452                  | 74.5                               | -                                 | 47•7                                | 61.3                                | 84.3                    | 66•4                      | 52•2                    | 64    | 1620 (165)                               | 480           |
| 470         | 441   | 442              | 442                  | 74•1                               | -                                 | 46.9                                | 60.7                                | 83.9                    | 65.7                      | 51.3                    | -     | 1570 (160)                               | 470           |
| 460         | 433   | 433              | 433                  | 73.6                               | -                                 | 46 • 1                              | 60 • 1                              | 83.6                    | 64.9                      | 50•4                    | 62    | 1530 (156)                               | 460           |
| 450         | 425   | 425              | 425                  | 73 • 3                             | -                                 | 45.3                                | 59•4                                | 83 • 2                  | 64.3                      | 49•4                    | -     | 1495 (153)                               | 450           |
| 440         | 415   | 415              | 415                  | 72.8                               | -                                 | 44.5                                | 58.8                                | 82.8                    | 63.5                      | 48•4                    | 59    | 1460 (149)                               | 440           |
| 430         | 405   | 405              | 405                  | 72.3                               | -                                 | 43.6                                | 58•2                                | 82.3                    | 62.7                      | 47•4                    | -     | 1410 (144)                               | 430           |
| 420         | 397   | 397              | 397                  | 71.8                               | -                                 | 42.7                                | 57.5                                | 81.8                    | 61.9                      | 46•4                    | 57    | 1370 (140)                               | 420           |
| 410         | 388   | 388              | 388                  | 71.4                               | -                                 | 41.8                                | 56.8                                | 81.4                    | 61 · 1                    | 45.3                    | -     | 1330 (136)                               | 410           |
| 400         | 379   | 379              | 379                  | 70.8                               | -                                 | 40.8                                | 56.0                                | 81.0                    | 60.2                      | 44 • 1                  | 55    | 1290 (131)                               | 400           |
| 390         | 369   | 369              | 369                  | 70.3                               | -                                 | 39.8                                | 55.2                                | 80.3                    | 59.3                      | 42.9                    | -     | 1240 (127)                               | 390           |
| 380         | 360   | 360              | 380                  | 69.8                               | (110•0)                           | 38.8                                | 54•4                                | 79•8                    | 58•4                      | 41.7                    | 52    | 1205 (123)                               | 380           |
| 370         | 350   | 350              | 350                  | 69·2                               | -                                 | 37.7                                | 53.6                                | 79•2                    | 57•4                      | 40 • 4                  | -     | 1170 (120)                               | 370           |
| 360         | 341   | 341              | 341                  | 68.7                               | (109•0)                           | 36.6                                | 52.8                                | 78•6                    | 56•4                      | 39·1                    | 50    | 1130 (115)                               | 360           |
| 350         | 331   | 331              | 331                  | 68 • 1                             | -                                 | 35.5                                | 51.9                                | 78.0                    | 55•4                      | 37.8                    | -     | 1095 (112)                               | 350           |
| 340         | 322   | 322              | 322                  | 67.6                               | (108•0)                           | 34.4                                | 51.1                                | 77 • 4                  | 54.4                      | 36.5                    | 47    | 1070 (109)                               | 340           |
| 330         | 313   | 313              | 313                  | 67.0                               | _                                 | 33.3                                | 50.2                                | 76.8                    | 53.6                      | 35 • 2                  | -     | 1035 (105)                               | 330           |

### 鋼のビッカース硬さに対する近似的換算値

|             |     | ブリネル硬で<br>球・荷重30 |                      |                                    | ロックウコ                             | cル硬さ <sup>②</sup>                   |                                     |                         | レスーパーフ <i>~</i><br>ヤモンド円錐 |                         |       | 引張強さ                                     |           |
|-------------|-----|------------------|----------------------|------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|-------------------------|---------------------------|-------------------------|-------|------------------------------------------|-----------|
| ビッカース<br>硬さ | 標準球 | Hult-gren<br>球   | タングステン<br>カーバイド<br>球 | Aスケール<br>荷重60kgf<br>ダイヤモンド<br>円錐圧子 | Bスケール<br>荷重100kgf<br>径1/16in<br>球 | Cスケール<br>荷重150kgf<br>ダイヤモンド<br>円錐圧子 | Dスケール<br>荷重100kgf<br>ダイヤモンド<br>円錐圧子 | 15-N<br>スケール<br>荷重15kgf | 30-N<br>スケール<br>荷重30kgf   | 45-N<br>スケール<br>荷重45kgf | ショア硬さ | (近似値)<br>MPa<br>(kgf/mm²) <sup>(1)</sup> | ビッカース硬さ荷重 |
| 320         | 303 | 303              | 303                  | 66•4                               | (107.0)                           | 33.2                                | 49•4                                | 76•2                    | 52.3                      | 33.9                    | 45    | 1005 (103)                               | 320       |
| 310         | 294 | 294              | 294                  | 65.8                               | -                                 | 31.0                                | 48•4                                | 75•6                    | 51.3                      | 32.5                    | -     | 980 (100)                                | 310       |
| 300         | 284 | 284              | 284                  | 65·2                               | (105 • 5)                         | 29.8                                | 47.5                                | 74•9                    | 50.2                      | 31 • 1                  | 42    | 950 ( 97)                                | 300       |
| 295         | 280 | 280              | 280                  | 64.8                               | -                                 | 29.2                                | 47 • 1                              | 74.6                    | 49.7                      | 30•4                    | -     | 935 ( 96)                                | 295       |
| 290         | 275 | 275              | 275                  | 64.5                               | (104.5)                           | 28.5                                | 46.5                                | 74•2                    | 49.0                      | 29.5                    | 41    | 915 (94)                                 | 290       |
| 285         | 270 | 270              | 270                  | 64•2                               | -                                 | 27.8                                | 46.0                                | 73.8                    | 48•4                      | 28.7                    | -     | 905 ( 92)                                | 285       |
| 280         | 265 | 265              | 265                  | 63.8                               | (103 • 5)                         | 27 • 1                              | 45.3                                | 73•4                    | 47.8                      | 27.9                    | 40    | 890 (91)                                 | 280       |
| 275         | 261 | 261              | 261                  | 63.5                               | -                                 | 26.4                                | 44•9                                | 73.0                    | 47 • 2                    | 27 • 1                  | -     | 875 ( 89)                                | 275       |
| 270         | 256 | 256              | 256                  | 63 • 1                             | (102.0)                           | 25.6                                | 44•3                                | 72.6                    | 46•4                      | 26•2                    | 38    | 855 ( 87)                                | 270       |
| 265         | 252 | 252              | 252                  | 62.7                               | -                                 | 24.8                                | 43.7                                | 72•1                    | 45.7                      | 25•2                    | -     | 840 (86)                                 | 265       |
| 260         | 247 | 247              | 247                  | 62•4                               | (101.0)                           | 24.0                                | 43 • 1                              | 71.6                    | 45.0                      | 24.3                    | 37    | 825 ( 84)                                | 260       |
| 255         | 243 | 243              | 243                  | 62.0                               | -                                 | 23 • 1                              | 42.2                                | 71 • 1                  | 44.2                      | 23 • 2                  | -     | 805 ( 82)                                | 255       |
| 250         | 238 | 238              | 238                  | 61.6                               | 99•5                              | 22.2                                | 41.7                                | 70.6                    | 43 • 4                    | 22.2                    | 36    | 795 (81)                                 | 250       |
| 245         | 233 | 233              | 233                  | 61.2                               | -                                 | 21.3                                | 41 • 1                              | 70 • 1                  | 42.5                      | 21 • 1                  | -     | 780 ( 79)                                | 245       |
| 240         | 228 | 228              | 228                  | 60.7                               | 98•1                              | 20.3                                | 40•3                                | 69•6                    | 41.7                      | 19•9                    | 34    | 765 ( 78)                                | 240       |
| 230         | 219 | 219              | 219                  | -                                  | 96•7                              | (18.0)                              | -                                   | -                       | -                         | -                       | 33    | 730 ( 75)                                | 230       |
| 220         | 209 | 209              | 209                  | -                                  | 95•0                              | (15.7)                              | -                                   | -                       | -                         | -                       | 32    | 695 (71)                                 | 220       |
| 210         | 200 | 200              | 200                  | -                                  | 93•4                              | (13•4)                              | -                                   | -                       | -                         | -                       | 30    | 670 ( 68)                                | 210       |
| 200         | 190 | 190              | 190                  | -                                  | 91•5                              | (11.0)                              | -                                   | -                       | -                         | -                       | 29    | 635 (65)                                 | 200       |
| 190         | 181 | 181              | 181                  | -                                  | 89•5                              | (8.5)                               | -                                   | -                       | -                         | -                       | 28    | 605 ( 62)                                | 190       |
| 180         | 171 | 171              | 171                  | -                                  | 87•1                              | (6.0)                               | -                                   | -                       | -                         | -                       | 26    | 580 ( 59)                                | 180       |
| 170         | 162 | 162              | 162                  | -                                  | 85•0                              | (3.0)                               | -                                   | -                       | -                         | -                       | 25    | 545 ( 56)                                | 170       |
| 160         | 152 | 152              | 152                  | -                                  | 81•7                              | (0.0)                               | -                                   | -                       | -                         | -                       | 24    | 515 (53)                                 | 160       |
| 150         | 143 | 143              | 143                  | -                                  | 78•7                              | -                                   | -                                   | -                       | -                         | -                       | 22    | 490 (50)                                 | 150       |
| 140         | 133 | 133              | 133                  | -                                  | 75•0                              | -                                   | -                                   | -                       | -                         | -                       | 21    | 455 ( 46)                                | 140       |
| 130         | 124 | 124              | 124                  | -                                  | 71•2                              | -                                   | -                                   | -                       | -                         | -                       | 20    | 425 ( 44)                                | 130       |
| 120         | 114 | 114              | 114                  | -                                  | 66•7                              | -                                   | -                                   | -                       | -                         | -                       | -     | 390 (40)                                 | 120       |
| 110         | 105 | 105              | 105                  | -                                  | 62•3                              | -                                   | -                                   | -                       | -                         | -                       | -     | -                                        | 110       |
| 100         | 95  | 95               | 95                   | -                                  | 56•2                              | -                                   | -                                   | -                       | -                         | -                       | -     | -                                        | 100       |
| 95          | 90  | 90               | 90                   | -                                  | 52•0                              | -                                   | -                                   | -                       | -                         | -                       | -     | -                                        | 95        |
| 90          | 86  | 86               | 86                   | -                                  | 48•0                              | -                                   | -                                   | -                       | -                         | -                       | -     | -                                        | 90        |
| 85          | 81  | 81               | 81                   | -                                  | 41.0                              | -                                   | -                                   | -                       | -                         | -                       | -     | -                                        | 85        |

備考: 太字体の数字はASTM E 140表1による(SAE-ASM-ASTMが合同で調整したものである。)注: (1) 括弧 ( ) を付けて示してある単位及び数値は、JIS Z 8438の換算表により psi から換算したものである。 なお 1MPa = 1N/ mm² (2) 表中括弧 ( ) 内の数字はあまり用いられない範囲のものであり参考として示したものである。 (3) JISハンドブック鉄鋼より引用

### 鋼のロックウェルC硬さに対する近似的換算値

| ロック                |                        |       | ブリネル硬で<br>球・荷重30 |                      | ロッ                                 | クウェル硬                             | [さ(2)                               |                         | レスーパーフ <i>~</i><br>ヤモンド円錐 |                         |          | 引張強さ                                   | ロック<br>ウェルC        |
|--------------------|------------------------|-------|------------------|----------------------|------------------------------------|-----------------------------------|-------------------------------------|-------------------------|---------------------------|-------------------------|----------|----------------------------------------|--------------------|
| ウェルC<br>スケール<br>硬さ | ビッカース<br>硬さ            | 標準球   | Hult-gren<br>球   | タングステン<br>カーバイド<br>球 | Aスケール<br>荷重60kgf<br>ダイヤモンド<br>円錐圧子 | Bスケール<br>荷重100kgf<br>径1/16in<br>球 | Dスケール<br>荷重100kgf<br>ダイヤモンド<br>円錐圧子 | 15-N<br>スケール<br>荷重15kgf | 30-N<br>スケール<br>荷重30kgf   | 45-N<br>スケール<br>荷重45kgf | ショア硬さ    | (近似値)<br>MPa<br>(kgf/mm²) <sup>⑴</sup> | ウェルC<br>スケール<br>硬さ |
| 68                 | 940                    | -     | -                | -                    | 85.6                               | -                                 | 76•9                                | 93•2                    | 84•4                      | 75•4                    | 97       | -                                      | 68                 |
| 67                 | 900                    | -     | -                | -                    | 85.0                               | -                                 | 76•1                                | 92.9                    | 83.6                      | 74•2                    | 95       | -                                      | 67                 |
| 66                 | 865                    | -     | -                | -                    | 84.5                               | -                                 | 75•4                                | 92.5                    | 82.8                      | 73.3                    | 92       | -                                      | 66                 |
| 65                 | 832                    | -     | -                | (739)                | 83.9                               | -                                 | 74.5                                | 92.2                    | 81.9                      | 72.0                    | 91       | -                                      | 65                 |
| 64                 | 800                    | -     | -                | (722)                | 83 • 4                             | -                                 | 73.8                                | 91.8                    | 81 • 1                    | 71.0                    | 88       | -                                      | 64                 |
| 63                 | 772                    | -     | -                | (705)                | 82.8                               | -                                 | 73.0                                | 91.4                    | 80 • 1                    | 69.9                    | 87       | -                                      | 63                 |
| 62                 | 746                    | -     | -                | (688)                | 82.3                               | -                                 | 72•2                                | 91 • 1                  | 79•3                      | 68.8                    | 85       | -                                      | 62                 |
| 61                 | 720                    | -     | -                | (670)                | 81.8                               | -                                 | 71.5                                | 90.7                    | 78•4                      | 67.7                    | 83       | -                                      | 61                 |
| 60                 | 697                    | -     | 613              | (654)                | 81.2                               | -                                 | 70.7                                | 90.2                    | 77.5                      | 66.6                    | 81       | -                                      | 60                 |
| 59                 | 674                    | -     | 599              | (634)                | 80.7                               | -                                 | 69.9                                | 89.8                    | 76.6                      | 65.5                    | 80       | -                                      | 59                 |
| 58                 | 653                    | -     | 587              | 615                  | 80 · 1                             | -                                 | 69.2                                | 89.3                    | 75.7                      | 64.3                    | 78       | -                                      | 58                 |
| 57                 | 633                    | -     | 575              | 595                  | 79.6                               | -                                 | 68.5                                | 88.9                    | 74.8                      | 63.2                    | 76       | -                                      | 57                 |
| 56                 | 613                    | -     | 561              | 577                  | 79·0<br>78·5                       | -                                 | 67·7<br>66·9                        | 88·3<br>87·9            | 73·9<br>73·0              | 62·0<br>60·9            | 75<br>74 | - 2075 (212)                           | 56<br>55           |
| 55                 | 595                    |       | 546              | 560                  |                                    | -                                 |                                     | 87·9<br>87·4            |                           |                         | 72       | 2075 (212)                             |                    |
| 54                 | 577<br>560             | -     | 534<br>519       | 543<br>525           | 78·0<br>77·4                       | -                                 | 66·1<br>65·4                        | 86·9                    | 72·0<br>71·2              | 59·8<br>58·6            | 72       | 2015 (205)                             | 54<br>53           |
| 53<br>52           | 544                    | (500) | 508              | 512                  | 77·4<br>76·8                       | _                                 | 64.6                                | 86·4                    | 71·2<br>70·2              | 57·4                    | 69       | 1950 (199)<br>1880 (192)               | 52                 |
| 52                 | 5 <del>44</del><br>528 | (300) | 494              | 496                  | 76.8                               | _                                 | 63.8                                | 85·9                    | 69·4                      | 56·1                    | 68       | 1820 (186)                             | 52                 |
| 50                 | 513                    | (487) | 494              | 490                  | 75.9                               | _                                 | 63.1                                | 85.5                    | 68.5                      | 55.0                    | 67       | 1760 (179)                             | 50                 |
| 49                 | 498                    | (464) | 469              | 469                  | 75.9                               | _                                 | 62.1                                | 85.0                    | 67.6                      | 53.8                    | 66       | 1695 (173)                             | 49                 |
| 48                 | 484                    | 451   | 455              | 455                  | 74.7                               | _                                 | 61.4                                | 84.5                    | 66.7                      | 52.5                    | 64       | 1635 (173)                             | 48                 |
| 47                 | 471                    | 442   | 443              | 443                  | 74.7                               | _                                 | 60.8                                | 83.9                    | 65.8                      | 51.4                    | 63       | 1580 (161)                             | 47                 |
| 46                 | 458                    | 432   | 432              | 432                  | 73.6                               | _                                 | 60.0                                | 83.5                    | 64.8                      | 50.3                    | 62       | 1530 (151)                             | 46                 |
| 45                 | 446                    | 421   | 421              | 421                  | 73 0                               | _                                 | 59.2                                | 83.0                    | 64.0                      | 49.0                    | 60       | 1480 (151)                             | 45                 |
| 44                 | 434                    | 409   | 409              | 409                  | 72.5                               | _                                 | 58.5                                | 82.5                    | 63 • 1                    | 47.8                    | 58       | 1435 (146)                             | 44                 |
| 43                 | 423                    | 400   | 400              | 400                  | 72.0                               | _                                 | 57.7                                | 82.0                    | 62.2                      | 46.7                    | 57       | 1385 (141)                             | 43                 |
| 42                 | 412                    | 390   | 390              | 390                  | 71.5                               | _                                 | 56.9                                | 81.5                    | 61.3                      | 45.5                    | 56       | 1340 (136)                             | 42                 |
| 41                 | 402                    | 381   | 381              | 381                  | 70.9                               | _                                 | 56.2                                | 80.9                    | 60.4                      | 44.3                    | 55       | 1295 (132)                             | 41                 |
| 40                 | 392                    | 371   | 371              | 371                  | 70.4                               | _                                 | 55.4                                | 80.4                    | 59.5                      | 43 • 1                  | 54       | 1250 (127)                             | 40                 |
| 39                 | 382                    | 362   | 362              | 362                  | 69.9                               | _                                 | 54.6                                | 79•9                    | 58.6                      | 41.9                    | 52       | 1215 (124)                             | 39                 |
| 38                 | 372                    | 353   | 353              | 353                  | 69.4                               | _                                 | 53.8                                | 79•4                    | 57.7                      | 40.8                    | 51       | 1180 (120)                             | 38                 |
| 37                 | 363                    | 344   | 344              | 344                  | 68.9                               | _                                 | 53 • 1                              | 78•8                    | 56.8                      | 39.6                    | 50       | 1160 (118)                             | 37                 |
| 36                 | 354                    | 336   | 336              | 336                  | 68.4                               | (109•0)                           | 52.3                                | 78•3                    | 55.9                      | 38•4                    | 49       | 1115 (114)                             | 36                 |
| 35                 | 345                    | 327   | 327              | 327                  | 67.9                               | (108•5)                           | 51.5                                | 77•7                    | 55.0                      | 37.2                    | 48       | 1080 (110)                             | 35                 |
| 34                 | 336                    | 319   | 319              | 319                  | 67•4                               | (108•0)                           | 50.8                                | 77•2                    | 54.2                      | 36.1                    | 47       | 1055 (108)                             | 34                 |
| 33                 | 327                    | 311   | 311              | 311                  | 66.8                               | (107•5)                           | 50.0                                | 76•6                    | 53.3                      | 34.9                    | 46       | 1025 (105)                             | 33                 |
| 32                 | 318                    | 301   | 301              | 301                  | 66.3                               | (107•0)                           | 49•2                                | 76•1                    | 52·1                      | 33.7                    | 44       | 1000 (102)                             | 32                 |
| 31                 | 310                    | 294   | 294              | 294                  | 65 • 8                             | (106•0)                           | 48•4                                | 75•6                    | 51.3                      | 32.5                    | 43       | 980 (100)                              | 31                 |
| 30                 | 302                    | 286   | 286              | 286                  | 65.3                               | (105•5)                           | 47.7                                | 75•0                    | 50.4                      | 31.3                    | 42       | 950 (97)                               | 30                 |
| 29                 | 294                    | 279   | 279              | 279                  | 64.7                               | (104.5)                           | 47.0                                | 74.5                    | 49.5                      | 30.1                    | 41       | 930 (95)                               | 29                 |

### 鋼のロックウェルC硬さに対する近似的換算値

| ロック                |             |     | ブリネル硬で<br>球・荷重30 |                      | ロッ                                 | クウェル硬                             | [さ(2)                               |                         | レスーパーフ <i>~</i><br>ヤモンド円錐 |                         |       | 引張強さ                                   | ロック                |
|--------------------|-------------|-----|------------------|----------------------|------------------------------------|-----------------------------------|-------------------------------------|-------------------------|---------------------------|-------------------------|-------|----------------------------------------|--------------------|
| ウェルC<br>スケール<br>硬さ | ビッカース<br>硬さ | 標準球 | Hult-gren<br>球   | タングステン<br>カーバイド<br>球 | Aスケール<br>荷重60kgf<br>ダイヤモンド<br>円錐圧子 | Bスケール<br>荷重100kgf<br>径1/16in<br>球 | Dスケール<br>荷重100kgf<br>ダイヤモンド<br>円錐圧子 | 15-N<br>スケール<br>荷重15kgf | 30-N<br>スケール<br>荷重30kgf   | 45-N<br>スケール<br>荷重45kgf | ショア硬さ | (近似値)<br>MPa<br>(kgf/mm²) <sup>⑴</sup> | ウェルC<br>スケール<br>硬さ |
| 28                 | 286         | 271 | 271              | 271                  | 64.3                               | (104.0)                           | 46.1                                | 73.9                    | 48•6                      | 28.9                    | 41    | 910 (93)                               | 28                 |
| 27                 | 279         | 264 | 264              | 264                  | 63.8                               | (103•0)                           | 45•2                                | 73.3                    | 47.7                      | 27.8                    | 40    | 880 (90)                               | 27                 |
| 26                 | 272         | 258 | 258              | 258                  | 63.3                               | (102•5)                           | 44.6                                | 72.8                    | 46.8                      | 26.7                    | 38    | 860 (88)                               | 26                 |
| 25                 | 266         | 253 | 253              | 253                  | 62.8                               | (101.5)                           | 43.8                                | 72 • 2                  | 45.9                      | 25.5                    | 38    | 840 (86)                               | 25                 |
| 24                 | 260         | 247 | 247              | 247                  | 62.4                               | (101.0)                           | 43 • 1                              | 71.6                    | 45.0                      | 24.3                    | 37    | 825 (84)                               | 24                 |
| 23                 | 254         | 243 | 243              | 243                  | 62.0                               | 100.0                             | 42 • 1                              | 71.0                    | 44.0                      | 23 • 1                  | 36    | 805 (82)                               | 23                 |
| 22                 | 248         | 237 | 237              | 237                  | 61.5                               | 99•0                              | 41.6                                | 70.5                    | 43.2                      | 22.0                    | 35    | 785 (80)                               | 22                 |
| 21                 | 243         | 231 | 231              | 231                  | 61.0                               | 98•5                              | 40.9                                | 69.9                    | 42.3                      | 20.7                    | 35    | 770 (79)                               | 21                 |
| 20                 | 238         | 226 | 226              | 226                  | 60.5                               | 97•8                              | 40 • 1                              | 69•4                    | 41.5                      | 19•6                    | 34    | 760 (77)                               | 20                 |
| (18)               | 230         | 219 | 219              | 219                  | -                                  | 96•7                              | -                                   | -                       | -                         | -                       | 33    | 730 (75)                               | (18)               |
| (16)               | 222         | 212 | 212              | 212                  | -                                  | 95•5                              | -                                   | -                       | -                         | -                       | 32    | 705 (72)                               | (16)               |
| (14)               | 213         | 203 | 203              | 203                  | -                                  | 93•9                              | -                                   | -                       | -                         | -                       | 31    | 675 (69)                               | (14)               |
| (12)               | 204         | 194 | 194              | 194                  | -                                  | 92•3                              | -                                   | -                       | -                         | -                       | 29    | 650 (66)                               | (12)               |
| (10)               | 196         | 187 | 187              | 187                  | -                                  | 90•7                              | -                                   | -                       | -                         | -                       | 28    | 620 (63)                               | (10)               |
| (8)                | 188         | 179 | 179              | 179                  | -                                  | 89•5                              | -                                   | -                       | -                         | -                       | 27    | 600 (61)                               | (8)                |
| (6)                | 180         | 171 | 171              | 161                  | -                                  | 87•1                              | -                                   | -                       | -                         | -                       | 26    | 580 (59)                               | (6)                |
| (4)                | 173         | 165 | 165              | 165                  | -                                  | 85•5                              | -                                   | -                       | -                         | -                       | 25    | 550 (56)                               | (4)                |
| (2)                | 166         | 158 | 158              | 158                  | -                                  | 83•5                              | -                                   | -                       | -                         | -                       | 24    | 530 (54)                               | (2)                |
| ( 0)               | 160         | 152 | 152              | 152                  | -                                  | 81•7                              | -                                   | -                       | -                         | -                       | 24    | 515 (53)                               | ( O)               |

注:(1) 太字体の数字はASTM E 140表1による(SAE-ASM-ASTMが合同で調整したものである。) (2) 括弧 ( ) を付けて示してある単位及び数値は、JIS Z 8438換算表により psi から換算したものである。 なお 1MPa = 1N/ mm² (3) JISハンドブック鉄鋼より引用

### 常用するはめ合いの穴の寸法許容差

単位: $\mu m$ 

| 寸法 <i>0</i><br>(m | D区分<br>m) | В            | C      |                   |        | D            |         |          | Е        |         |          | F          |         | (    | 3         |      |      | ı    | 1      |       |       |
|-------------------|-----------|--------------|--------|-------------------|--------|--------------|---------|----------|----------|---------|----------|------------|---------|------|-----------|------|------|------|--------|-------|-------|
| をこえ               |           | B10          | C9     | C10               | D8     | D9           | D10     | E7       | E8       | E9      | F6       | F7         | F8      | G6   | G7        | Н6   | H7   | Н8   | H9     | H10   | H11   |
|                   |           | +180         | +85 -  | +100              | +34    | +45          | +60     | +24      | +28      | +39     | +12      | +16        | +20     | +8   | +12       | +6   | +10  | +14  | +25    | +40   | +60   |
| -                 | 3         | +140         | +60    | 0                 |        | +20          |         |          | +14      |         |          | +6         |         | +    | -2        |      |      | (    | )      |       |       |
| 3                 | 6         | +188         | +100 - | +118              | +48    | +60          | +78     | +32      | +38      | +50     | +18      | +22        | +28     | +12  | +16       | +8   | +12  | +18  | +30    | +48   | +75   |
|                   | 0         | +140         |        |                   |        | +30          |         |          | +20      |         |          | +10        |         |      | 4         |      |      |      | )      |       |       |
| 6                 | 10        |              | +116 - |                   | +62    | +76          | +98     | +40      | +47      | +61     | +22      | +28        | +35     |      | +20       | +9   | +15  | +22  | +36    | +58   | +90   |
|                   |           | +150         | +80    | )                 |        | +40          |         |          | +25      |         |          | +13        |         | +    | -5        |      |      | (    | )      |       |       |
| 10                | 14        | +220         | +138 - | +165              | +77    | +93          | +120    | +50      | +59      | +75     | +27      | +34        | +43     | +17  | +24       | +11  | +18  | +27  | +43    | +70   | +110  |
| 14                | 18        | +150         | +95    | 5                 |        | +50          |         |          | +32      |         |          | +16        |         | +    | 6         |      |      | (    | )      |       |       |
| 18                | 24        | +244         | +162 - | +194              | +98    | +117         | +149    | +61      | +73      | +92     | +33      | +41        | +53     | +20  | +28       | +13  | +21  | +33  | +52    | +84   | +130  |
| 24                | 30        | +160         | +11    | 0                 |        | +65          |         |          | +40      |         |          | +20        |         | +    | .7        |      |      | (    | )      |       |       |
| 20                | 40        | +270         | +182 - | +220              |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
| 30                | 40        | +170         | +12    | 0                 | +119   | +142         | +180    | +75      | +89      | +112    | +41      | +50        | +64     | +25  | +34       | +16  | +25  | +39  | +62    | +100  | +160  |
| 40                | 50        | +280         | +192 - | +230              |        | +80          |         |          | +50      |         |          | +25        |         | +    | .9        |      |      | (    | )      |       |       |
|                   |           | +180         |        |                   |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
| 50                | 65        |              | +214 - |                   | . 146  | . 174        | . 220   | . 00     | . 100    | . 124   | . 40     |            | . 76    | . 20 | . 40      | . 10 | . 20 | . 40 | . 74   | . 120 | . 100 |
|                   |           | +190<br>+320 | +14    |                   | +140   | +174         | +220    | +90      | +106     | +134    | +49      | +60<br>+30 | +76     |      | +40<br>10 | +19  | +30  | +40  |        | +120  | +190  |
| 65                | 80        | +200         |        | +224 +270<br>+150 |        | +100         |         |          | T00      |         |          | T30        |         |      | 10        |      |      | `    | ,      |       |       |
|                   |           |              | +257 - |                   |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
| 80                | 100       | +220         |        |                   | +174   | +207         | +260    | +107     | +126     | +159    | +58      | +71        | +90     | +34  | +47       | +22  | +35  | +54  | +87    | +140  | +220  |
| 100               | 120       | +380         | +267 - | +320              |        | +120         |         |          | +72      |         |          | +36        |         | +    | 12        |      |      |      |        |       | 0     |
| 100               | 120       | +240         | +18    | 0                 |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
| 120               | 140       | +420         | +300 - | +360              |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
|                   |           | +260         |        |                   |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
| 140               | 160       |              | +310 - |                   | +208   |              | +305    | +125     |          | +185    | +68      |            | +106    |      |           | +25  | +40  |      |        | +160  | +250  |
|                   |           | +280         |        |                   |        | +145         |         |          | +85      |         |          | +43        |         | +    | 14        |      |      | (    | )      |       |       |
| 160               | 180       | +310         | +330 - |                   |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
|                   |           |              | +355 - |                   |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
| 180               | 200       | +340         | +24    |                   |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
|                   |           |              | +375 - |                   | +242   | +285         | +355    | +146     | +172     | +215    | +79      | +96        | +122    | +44  | +61       | +29  | +46  | +72  | +115   | +185  | +290  |
| 200               | 225       | +380         | +26    | 0                 |        | +170         |         |          | +100     |         |          | +50        |         |      | 15        |      |      | (    | )      |       |       |
| 225               | 250       | +605         | +395 - | +465              |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
| 225               | 250       | +420         | +28    | 0                 |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
| 250               | 280       | +690         | +430 - | +510              |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
| 230               | 200       | +480         | +30    | 0                 | +271   | +320         | +400    | +162     | +191     | +240    | +88      | +108       | +137    | +49  | +69       | +32  | +52  | +81  | +130   | +210  | +320  |
| 280               | 315       |              | +460 - |                   |        | +190         |         |          | +110     |         |          | +56        |         | +    | 17        |      |      | (    | )      |       |       |
|                   |           | +540         |        |                   |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
| 315               | 355       |              | +500 - |                   | . 200  | . 250        | . 440   | . 102    | . 214    | . 265   | . 00     | . 110      | . 1 - 1 | 4    | . 75      |      |      | . 00 | . 1 40 | . 220 | . 260 |
|                   |           | +600         |        |                   | +299   |              | +440    | +182     |          | +265    | +98      |            | +151    |      | +75       | +36  | +57  |      | +140   | +230  | +360  |
| 355               | 400       | +910         | +540 - |                   |        | +210         |         |          | +125     |         |          | +62        |         | +    | 18        |      |      | (    | J      |       |       |
|                   |           |              | +595 - |                   |        |              |         |          |          |         |          |            |         |      |           |      |      |      |        |       |       |
| 400               | 450       | +760         |        |                   | +327   | +385         | +480    | +198     | +232     | +290    | +108     | +131       | +165    | +60  | +83       | +40  | +63  | +97  | +155   | +250  | +400  |
|                   |           |              | +635 - |                   | . 52,  | +230         | 00      |          | +135     |         |          | +68        |         |      | 20        |      | . 55 |      | )      | . 250 | 00    |
| 450               | 500       | +840         |        |                   |        | 55           |         |          |          |         |          | . 55       |         | '    | -         |      |      | •    | -      |       |       |
| /++: -+*          | -t1. o    |              | 上側の    |                   | 2. [ 2 | I. Vala Shed | - عبدرب | T/01 (1) | ₩./±1.Ъ= | C > _L\ | L =1-1-1 |            | 2       |      |           |      |      |      |        |       |       |

### 常用するはめ合いの穴の寸法許容差

単位: $\mu$ m

| 寸法 <i>0</i><br>(m | D区分<br>m) |          | J           | s        |       | ı                | <                 | ٨          | Л         | ١          | ١          | F          | )          | R            | S            | Т            | U            | Х          |
|-------------------|-----------|----------|-------------|----------|-------|------------------|-------------------|------------|-----------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|------------|
| をこえ               | 以下        | Js6      | Js7         | Js8      | Js9   | K6               | K7                | M6         | M7        | N6         | N7         | P6         | P7         | R7           | S7           | T7           | U7           | Х7         |
| -                 | 3         | ±3       | ±5          | ±7       | ±12.5 | 0                | 0                 | -2         | -2        | -4         | -4         | -6         | -6         | -10          | -14          | -            | -18          | -20        |
|                   |           |          |             |          |       | -6<br>+2         | -10<br>+3         | -8<br>-1   | -12<br>0  | -10<br>-5  | -14<br>-4  | -12<br>-9  | -16<br>-8  | -20<br>-11   | -24<br>-15   |              | -28<br>-19   | -30<br>-24 |
| 3                 | 6         | ±4       | ±6          | ±9       | ±15   | -6               | -9                | -9         | -12       | -13        | -16        | -17        | -20        | -23          | -27          | -            | -31          | -36        |
| 6                 | 10        | ±4.5     | ±7.5        | ±11      | ±18   | +2               | +5                | -3         | 0         | -7         | -4         | -12        | -9         | -13          | -17          | _            | -22          | -28        |
|                   |           |          |             |          |       | -7               | -10               | -12        | -15       | -16        | -19        | -21        | -24        | -28          | -32          |              | -37          | -43        |
| 10                | 14        |          |             |          |       | +2               | +6                | -4         | 0         | -9         | -5         | -15        | -11        | -16          | -21          |              | -26          | -33<br>-51 |
| 14                | 18        | ±5.5     | ±9          | ±13.5    | ±21.5 | -9               | -12               | -15        | -18       | -20        | -23        | -26        | -29        | -34          | -39          | -            | -44          | -38        |
| 17                | 10        |          |             |          |       |                  |                   |            |           |            |            |            |            |              |              |              |              | -56        |
| 18                | 24        |          |             |          |       | +2               | +6                | -4         | 0         | -11        | -7         | -18        | -14        | -20          | -27          | -            | -33<br>-54   | -46<br>-67 |
| 24                | 20        | ±6.5     | ±10.5       | ±16.5    | ±26   | -11              | -15               | -17        | -21       | -24        | -28        | -31        | -35        | -41          | -48          | -33          | -40          | -56        |
| 24                | 30        |          |             |          |       |                  |                   |            |           |            |            |            |            |              |              | -54          | -61          | -77        |
| 30                | 40        |          |             |          |       | +3               | +7                | 4          | 0         | 12         | -8         | 21         | -17        | -25          | -31          | -39<br>-64   | -51<br>-76   |            |
|                   |           | ±8       | ±12.5       | ±19.5    | ±31   | +3<br>-13        | +7<br>-18         | -4<br>-20  | -25       | -12<br>-28 | -8<br>-33  | -21<br>-37 | -17<br>-42 | -25<br>-50   | -59          | -45          | -76<br>-61   | -          |
| 40                | 50        |          |             |          |       |                  |                   |            |           |            |            |            |            |              |              | -70          | -86          |            |
| 50                | 65        |          |             |          |       |                  |                   | _          |           |            |            |            |            | -30          | -42          | -55          | -76          |            |
|                   |           | ±9.5     | ±15         | ±23      | ±37   | +4<br>-15        | +9<br>-21         | -5<br>-24  | -30       | -14<br>-33 | -9<br>-39  | -26<br>-45 | -21<br>-51 | -60<br>-32   | -72<br>-48   | -85<br>-64   | -106<br>-91  | -          |
| 65                | 80        |          |             |          |       | 13               | 21                | 27         | 30        | 33         | 37         | 73         | 31         | -62          | -78          | -94          | -121         |            |
| 80                | 100       |          |             |          |       |                  |                   |            |           |            |            |            |            | -38          | -58          | -78          | -111         |            |
|                   | 100       | ±11      | ±17.5       | ±27      | ±43.5 | +4               | +10               | -6         | 0         | -16        | -10        | -30        | -21        | -73          | -93          | -113         | -146         | -          |
| 100               | 120       |          |             |          |       | -18              | -25               | -28        | -35       | -38        | -45        | -52        | -59        | -41<br>-76   | -66<br>-101  | -91<br>-126  | -131<br>-166 |            |
| 120               | 1.40      |          |             |          |       |                  |                   |            |           |            |            |            |            | -48          | -77          | -107         | 100          |            |
| 120               | 140       |          |             |          |       |                  |                   |            |           |            |            |            |            | -88          | -117         | -147         |              |            |
| 140               | 160       | ±12.5    | ±20         | ±31.5    | ±50   | +4               | +12               | -8         | 0         | -20        | -12        | -36        | -28        | -50          | -85          | -119         | -            | -          |
|                   |           |          |             |          |       | -21              | -28               | -33        | -40       | -45        | -52        | -61        | -68        | -90<br>-53   | -125<br>-93  | -159<br>-131 |              |            |
| 160               | 180       |          |             |          |       |                  |                   |            |           |            |            |            |            | -93          | -133         | -171         |              |            |
| 180               | 200       |          |             |          |       |                  |                   |            |           |            |            |            |            | -60          | -105         |              |              |            |
|                   |           |          |             |          |       |                  | . 12              | 0          |           | 22         |            | 4.1        | 22         | -106         | -151         | -            |              |            |
| 200               | 225       | ±14.5    | ±23         | ±36      | ±57.5 | +5<br>-24        | +13<br>-33        | -8<br>-37  | 0<br>-46  | -22<br>-51 | -14<br>-60 | -41<br>-70 | -33<br>-79 | -63<br>-109  | -113<br>-159 | -            | -            | -          |
| 225               | 250       |          |             |          |       |                  | 33                | 37         | 10        | 31         | 00         | , 0        | ,,,        | -67          | -123         |              |              |            |
| 225               | 250       |          |             |          |       |                  |                   |            |           |            |            |            |            | -113         | -169         |              |              |            |
| 250               | 280       |          |             |          |       |                  | , 16              | _          | _         | 25         | 1 4        | 47         | 26         | -74<br>126   |              |              |              |            |
|                   |           | ±16      | ±26         | ±<br>405 | ±65   | +5<br>-27        | +16<br>-36        | -9<br>-41  | 0<br>-52  | -25<br>-57 | -14<br>-66 | -47<br>-79 | -36<br>-88 | -126<br>-78  | -            | -            | -            | -          |
| 280               | 315       |          |             |          |       |                  |                   |            |           |            |            |            |            | -130         |              |              |              |            |
| 315               | 355       |          |             |          |       |                  |                   |            |           |            |            |            |            | -87          |              |              |              |            |
|                   |           | ±18      | ±28.5       | ±44.5    | ±70   | +7<br>-29        | +17<br>-40        | -10<br>-46 | 0<br>-57  | -26<br>-62 | -16<br>-73 | -51<br>-87 | -41<br>-93 | -144<br>-93  | -            | -            | -            | -          |
| 355               | 400       |          |             |          |       | -29              | -40               | -40        | -5/       | -02        | -/3        | -0/        | -93        | -93<br>-150  |              |              |              |            |
| 400               | 450       |          |             |          |       |                  |                   |            |           |            |            |            |            | -103         |              |              |              |            |
| 400               | 430       | ±20      | ±31.5       | ±48.5    | ±77.5 | +8               | +18               | -10        | 0         | -27        | -17        | -55        | -45        | -166         | _            | _            | _            | _          |
| 450               | 500       |          |             |          |       | -32              | -45               | -50        | -63       | -67        | -80        | -95        | -108       | -109<br>-172 |              |              |              |            |
| 備考 君              | ト山の夕      | FIL-75 I | <br>  . /四( | (古)よ [.  | <br>  | <del>5</del> 4 т | <b>-</b> /m/ ∞ *+ | (±), \     | )_b>+=>h- | 5×+        | · -1-      |            |            | 1/2          |              |              |              |            |

参考等

### 常用するはめ合いの軸の寸法許容差

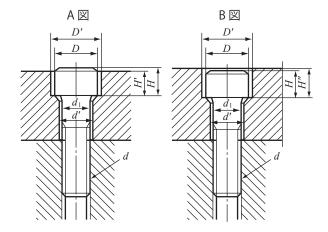
単位: $\mu m$ 

|     | D区分<br>m) |             | j     | s      |                    |      | k             | r    | n         | n          | р          | r    | S            | t          | u    | х          |
|-----|-----------|-------------|-------|--------|--------------------|------|---------------|------|-----------|------------|------------|------|--------------|------------|------|------------|
| をこえ | 以下        | js5         | js6   | js7    | js8                | k5   | k6            | m5   | m6        | n6         | р6         | r6   | s6           | t6         | u6   | хб         |
| _   | 3         | ±2          | ±3    | ±5     | ±7                 | +4   | +6            | +6   | +8        | +10        | +12        | +16  | +20          | -          | +24  | +26        |
|     | ,         | <u>-</u> .2 | -5    | - 3    | <u>-</u> /         |      | 0             |      | -2        | +4         | +6         | +10  | +14          |            | +18  | +20        |
| 3   | 6         | ±2.5        | ±4    | ±6     | ±9                 | +6   | +9            | +9   | +12       | +16        | +20        | +23  | +27          | -          | +31  | +36        |
|     | _         |             |       |        |                    |      | +1            | _    | -4        | +8         | +12        | +15  | +19          |            | +23  | +28        |
| 6   | 10        | ±3          | ±4.5  | ±7.5   | ±11                | +7   | +10           | +12  | +15       | +19        | +24        | +28  | +32          | -          | +37  | +43        |
|     |           |             |       |        |                    |      | +1            | +    | -6        | +10        | +15        | +19  | +23          |            | +28  | +34        |
| 10  | 14        |             |       |        |                    | +9   | +12           | +15  | +18       | +23        | +29        | +34  | +39          |            | +44  | +51<br>+40 |
|     |           | ±4          | ±5.5  | ±9     | ±13.5              |      | +1            |      | -7        | +12        | +18        | +23  | +28          | -          | +33  | +56        |
| 14  | 18        |             |       |        |                    |      |               |      |           |            |            |      |              |            |      | +45        |
| 10  | 24        |             |       |        |                    |      |               |      |           |            |            |      |              |            | +54  | +67        |
| 18  | 24        | ±4.5        | ±6.5  | ±10.5  | +165               | +11  | +15           | +17  | +21       | +28        | +35        | +41  | +48          | -          | +41  | +54        |
| 24  | 30        | 1 ±4.5      | ±6.5  | ±10.5  | ±16.5              |      | +2            | +    | -8        | +15        | +22        | +28  | +35          | +54        | +61  | +77        |
| 24  | 30        |             |       |        |                    |      |               |      |           |            |            |      |              | +41        | +48  | +64        |
| 30  | 40        |             |       |        |                    |      |               |      |           |            |            |      |              | +64        | +76  |            |
|     |           | ±5.5        | ±8    | ±12.5  | ±19.5              | +13  | +18           | +20  | +25       | +33        | +42        | +50  | +59          | +48        | +60  | _          |
| 40  | 50        |             |       |        |                    |      | +2            | +    | .9        | +17        | +26        | +34  | +43          | +70        | +86  |            |
|     |           |             |       |        |                    |      |               |      |           |            |            |      | . 70         | +54        | +70  |            |
| 50  | 65        |             |       |        |                    | . 15 | . 21          | . 24 | . 20      | . 20       | . 51       | +60  | +72          | +85        | +106 |            |
|     |           | ±6.5        | ±9.5  | ±15    | ±23                | +15  | +21<br>+2     | +24  | +30<br>11 | +30<br>+20 | +51<br>+32 | +41  | +53<br>+78   | +66<br>+94 | +87  | -          |
| 65  | 80        |             |       |        |                    |      | +2            | +    | 11        | +20        | +32        | +43  | +59          | +75        | +121 |            |
|     |           |             |       |        |                    |      |               |      |           |            |            | +73  | +93          | +113       | +146 |            |
| 80  | 100       |             |       |        |                    | +18  | +25           | +28  | +35       | +45        | +59        | +51  | +71          | +104       | +124 |            |
|     |           | ±7.5        | ±11   | ±17.5  | ±27                |      | +3            |      | 13        | +23        | +37        | +76  | +101         | +126       | +166 | -          |
| 100 | 120       |             |       |        |                    |      |               |      |           |            |            | +54  | +79          | +104       | +144 |            |
| 120 | 140       |             |       |        |                    |      |               |      |           |            |            | +88  | +117         | +147       |      |            |
| 120 | 140       |             |       |        |                    |      |               |      |           |            |            | +63  | +92          | +122       |      |            |
| 140 | 160       | ±9          | ±12.5 | ±20    | ±31.5              | +21  | +28           | +33  | +40       | +52        | +68        | +90  | +125         | +159       | _    | _          |
| 140 | 100       |             | 12.5  | -20    | -51.5              |      | +3            | +    | 15        | +27        | +43        | +65  | +100         | +134       | _    | _          |
| 160 | 180       |             |       |        |                    |      |               |      |           |            |            | +93  | +133         | +171       |      |            |
|     |           |             |       |        |                    |      |               |      |           |            |            | +68  | +108         | +146       |      |            |
| 180 | 200       |             |       |        |                    |      |               |      |           |            |            | +106 | +151         |            |      |            |
|     |           |             |       |        |                    | . 24 | . 22          | . 27 | . 46      |            | . 70       | +77  | +122         | -          |      |            |
| 200 | 225       | ±10         | ±14.5 | ±23    | ±36                | +24  | +33<br>+4     | +37  | +46<br>17 | +60<br>+31 | +79<br>+50 | +109 | +159<br>+130 | -          | -    | -          |
|     |           | -           |       |        |                    |      | <del>+4</del> |      | 17        | +31        | +30        | +113 | +169         |            |      |            |
| 225 | 250       |             |       |        |                    |      |               |      |           |            |            | +84  | +140         |            |      |            |
|     |           |             |       |        |                    |      |               |      |           |            |            | +126 | 1110         |            |      |            |
| 250 | 280       |             |       |        |                    | +27  | +36           | +43  | +52       | +66        | +88        | +94  |              |            |      |            |
| 200 | 215       | ±11.5       | ±16   | ±26    | ±40.5              |      | +4            |      | 20        | +34        | +56        | +130 | -            | -          | -    | -          |
| 280 | 315       |             |       |        |                    |      |               |      |           |            |            | +98  |              |            |      |            |
| 315 | 255       |             |       |        |                    |      |               |      |           |            |            | +144 |              |            |      |            |
| 313 | 355       | ±12.5       | ±18   | ±28.5  | ±44.5              | +29  | +40           | +46  | +57       | +73        | +98        | +108 | _            | _          | _    | _          |
| 355 | 400       | - 12.3      | - 10  | - 20.3 | _ <del>44</del> .5 |      | +4            | +:   | 21        | +37        | +62        | +150 | _            | _          | _    | _          |
|     | 1.50      |             |       |        |                    |      |               |      |           |            |            | +114 |              |            |      |            |
| 400 | 450       |             |       |        |                    |      | _             |      |           |            |            | +166 |              |            |      |            |
|     |           | ±13.5       | ±20   | ±31.5  | ±48.5              |      | +45           | +50  |           | +80        | +108       | +126 | _            | -          | -    | -          |
| 450 | 500       |             |       |        |                    |      | +5            | +:   | 23        | +40        | +68        | +172 |              |            |      |            |
|     |           |             |       |        |                    |      | 数値は下          |      |           |            |            | +132 |              |            |      |            |

### 常用するはめ合いの軸の寸法許容差

単位: $\mu$ m

| をこえ」  | N.T |              |              |            |           |      |              |              |      | f           |                  |                                        | )        |     |       |     | h        |      |      |      |
|-------|-----|--------------|--------------|------------|-----------|------|--------------|--------------|------|-------------|------------------|----------------------------------------|----------|-----|-------|-----|----------|------|------|------|
|       | 以卜  | b9           | c9           | d8         | d9        | e7   | e8           | e9           | f6   | f7          | f8               | g5                                     | g6       | h5  | h6    | h7  | h8       | h9   | h10  | h11  |
| -     | 3   | -140         | -60          |            | 20        |      | -14          |              |      | -6          |                  | -:                                     |          |     |       |     | 0        |      |      |      |
|       |     | -165         | -85          |            | -45       | -24  | -28          | -39          | -12  | -16         | -20              | -6                                     | -8       | -4  | -6    | -10 | -14<br>0 | -25  | -40  | -60  |
| 3     | 6   | -140<br>-170 | -70<br>-100  |            | 30<br>-60 | -32  | -20<br>-38   | -50          | -18  | -10<br>-22  | -28              |                                        | 4<br>-12 | -5  | -8    | -12 | -18      | -30  | -48  | -75  |
|       | 10  | -150         | -80          |            | 10        |      | -25          |              |      | -13         |                  | -                                      |          |     |       |     | 0        |      |      | -,5  |
| 6     | 10  | -186         | -116         | -62        | -76       | -40  | -47          | -61          | -22  | -28         | -35              | -11                                    | -14      | -6  | -9    | -15 | -22      | -36  | -58  | -90  |
| 10    | 14  | 150          | 0.5          | ,          | -0        |      | 22           |              |      | 1.0         |                  |                                        |          |     |       |     | 0        |      |      |      |
|       |     | -150<br>-193 | -95<br>-138  | -77        | -93       | -50  | -32<br>-59   | -75          | -27  | -16<br>-34  | -43              | -14                                    |          | -8  | -11   | -18 | 0<br>-27 | -43  | -70  | -110 |
| 14    | 18  | 175          | 150          | ,,         | )3        | 30   | 37           | 73           | 27   | 51          | 13               |                                        | 17       |     | • • • | 10  | 27       | 13   | 70   | 110  |
| 18    | 24  |              |              |            |           |      |              |              |      |             |                  |                                        |          |     |       |     |          |      |      |      |
| 10    | 24  | -160         | -110         |            | 55        |      | -40          |              |      | -20         |                  | -                                      |          |     |       |     | 0        |      |      |      |
| 24    | 30  | -212         | -162         | -98        | -117      | -61  | -73          | -92          | -33  | -41         | -53              | -16                                    | -20      | -9  | -13   | -21 | -33      | -52  | -84  | -130 |
|       |     | -170         | -120         |            |           |      |              |              |      |             |                  |                                        |          |     |       |     |          |      |      |      |
| 30    | 40  | -232         | -182         | -8         | 30        |      | -50          |              |      | -25         |                  |                                        | 9        |     |       |     | 0        |      |      |      |
| 40    | 50  | -180         | -130         | -119       | -142      | -75  | -89          | -112         | -41  | -50         | -64              | -20                                    | -25      | -11 | -16   | -25 | -39      | -62  | -100 | -160 |
| 10    | 50  | -242         | -192         |            |           |      |              |              |      |             |                  |                                        |          |     |       |     |          |      |      |      |
| 50    | 65  | -190<br>-264 | -140<br>-214 | -1         | 00        |      | -60          |              |      | -30         |                  | -1                                     | 0        |     |       |     | 0        |      |      |      |
|       |     | -204         | -150         | 1          | -174      | -90  |              | -134         | -49  | -60         | -76              |                                        | -29      | -13 | -19   | -30 | -46      | -74  | -120 | -190 |
| 65    | 80  | -274         | -224         |            |           |      |              |              | .,   | 00          | , 0              |                                        |          |     | .,    | 50  |          | , ,  | .20  | .,,  |
| 80    | 100 | -220         | -170         |            |           |      |              |              |      |             |                  |                                        |          |     |       |     |          |      |      |      |
| 00    | 100 | -307         | -257         | 1          | 20        |      | -72          |              |      | -36         |                  | -1                                     |          |     |       |     | 0        |      |      |      |
| 100   | 120 | -240         | -180         | -174       | -207      | -107 | -126         | -159         | -58  | -71         | -90              | -27                                    | -34      | -15 | -22   | -35 | -54      | -87  | -140 | -220 |
|       |     | -327<br>-260 | -267<br>-200 |            |           |      |              |              |      |             |                  |                                        |          |     |       |     |          |      |      |      |
| 120   | 140 | -360         | -300         |            |           |      |              |              |      |             |                  |                                        |          |     |       |     |          |      |      |      |
| 140   | 160 | -280         | -210         | -1         | 45        |      | -85          |              |      | -43         |                  | -1                                     | 4        |     |       |     | 0        |      |      |      |
| 140   | 160 | -380         | -310         | -208       | -245      | -125 | -148         | -185         | -68  | -83         | -106             | -32                                    | -39      | -18 | -25   | -40 | -63      | -100 | -160 | -250 |
| 160   | 180 | -310         | -230         |            |           |      |              |              |      |             |                  |                                        |          |     |       |     |          |      |      |      |
|       |     | -410<br>-340 | -330<br>-240 |            |           |      |              |              |      |             |                  |                                        |          |     |       |     |          |      |      |      |
| 180 2 | 200 | -455         | -355         |            |           |      |              |              |      |             |                  |                                        |          |     |       |     |          |      |      |      |
| 200   | 225 | -380         | -260         | -1         | 70        |      | -100         |              |      | -50         |                  | -1                                     | 5        |     |       |     | 0        |      |      |      |
| 200 2 | 225 | -495         | -375         | -242       | -285      | -146 | -172         | -215         | -79  | -96         | -122             | -35                                    | -44      | -20 | -29   | -46 | -72      | -115 | -185 | -290 |
| 225   | 250 | -420         |              |            |           |      |              |              |      |             |                  |                                        |          |     |       |     |          |      |      |      |
|       |     | -535<br>-480 | -395<br>-300 |            |           |      |              |              |      |             |                  |                                        |          |     |       |     |          |      |      |      |
| 250 2 | 280 | -480<br>-610 | -300<br>-430 | -1         | 90        |      | -110         |              |      | -56         |                  | -1                                     | 7        |     |       |     | 0        |      |      |      |
| 200   | 215 | -540         | -330         | 1          |           |      |              |              |      |             |                  |                                        |          | -23 | -32   | -52 |          | -130 | -210 | -320 |
| 280 3 | 315 | -670         | -460         |            |           |      |              |              |      |             |                  |                                        |          |     |       |     |          |      |      |      |
| 315   | 355 | -600         | -360         | _          |           |      |              |              |      |             |                  |                                        |          |     |       |     | -        |      |      |      |
|       |     | -710<br>-680 | -500<br>-400 | -2<br>-200 |           | -182 | -125<br>-214 | -265         | _0.0 | -62<br>-110 | _151             | -1<br>-43                              |          | _25 | _26   | _57 | 0        | -140 | -320 | -260 |
| 355   | 400 | -820         | -400<br>-540 | -299       | -330      | -102 | -214         | -203         | -30  | -119        | -131             | -43                                    | -34      | -23 | -30   | -3/ | -09      | -140 | -230 | -200 |
| 400   | 450 | -760         | -440         |            |           |      |              |              |      |             |                  |                                        |          |     |       |     |          |      |      |      |
| 400 4 | 450 | -915         | -595         | -2         |           |      |              |              |      | -68         |                  | -2                                     |          |     |       |     | 0        |      |      |      |
| 450   | 500 | -840         |              | -327       | -385      | -198 | -232         | -290         | -108 | -131        | -165             | -47                                    | -60      | -27 | -40   | -63 | -97      | -155 | -250 | -400 |
| 備考表   |     | -995         | -635         | ****       | . [ -> '  | )    | · ·          | 14 公 孝 : 1-1 | 0.1  |             | . ماد عابد وباین | ــــــــــــــــــــــــــــــــــــــ |          |     |       |     |          |      |      |      |


### メートル並目および細目ネジのピッチと下穴参考ドリル寸法

単位:mm

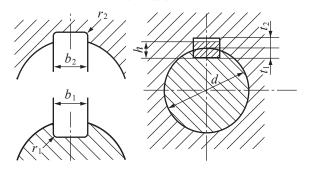
| · ·   |      | ピソ   | ッチ   |      | 下穴参考 | 単位:mm<br><b>ドリル径</b> |
|-------|------|------|------|------|------|----------------------|
| ネジの呼び | 並目   |      | 細目   |      | 並目   | ヘリサート                |
| M1    | 0.25 | 0.2  |      |      | 0.75 |                      |
| M1.1  | 0.25 | 0.2  |      |      | 0.85 |                      |
| M1.2  | 0.25 | 0.2  |      |      | 0.95 |                      |
| M1.4  | 0.3  | 0.2  |      |      | 1.1  |                      |
| M1.6  | 0.35 | 0.2  |      |      | 1.25 |                      |
| M1.8  | 0.35 | 0.2  |      |      | 1.45 |                      |
| M2    | 0.4  | 0.25 |      |      | 1.6  | 2.1                  |
| M2.2  | 0.45 | 0.25 |      |      | 1.75 | 2.4                  |
| M2.5  | 0.45 | 0.35 |      |      | 2.1  | 2.6                  |
| МЗ    | 0.5  | 0.35 |      |      | 2.5  | 3.1                  |
| M3.5  | 0.6  | 0.35 |      |      | 2.9  | 3.7                  |
| M4    | 0.7  | 0.5  |      |      | 3.3  | 4.2                  |
| M4.5  | 0.75 | 0.5  |      |      | 3.8  | 3.6                  |
| M5    | 0.8  | 0.5  |      |      | 4.2  | 5.2                  |
| M6    | 1    | 0.75 |      |      | 5    | 6.3                  |
| M8    | 1.25 | 0.75 | 1    |      | 6.8  | 8.4                  |
| M10   | 1.5  | 0.75 | 1    | 1.25 | 8.5  | 10.5                 |
| M12   | 1.75 | 1    | 1.25 | 1.5  | 10.3 | 12.5                 |
| M14   | 2    | 1    | 1.25 | 1.5  | 12   | 14.5                 |
| M16   | 2    | 1    | 1.5  | 1.5  | 14   | 16.5                 |
| M18   | 2.5  | 1    | 1.5  | 2    | 15.5 | 19                   |
| M20   | 2.5  | 1    | 1.5  | 2    | 17.5 | 21                   |
| M22   | 2.5  | 1    | 1.5  | 2    | 19.5 | 23                   |
| M24   | 3    | 1    | 1.5  | 2    | 21   | 25                   |
| M27   | 3    | 1    | 1.5  | 2    | 24   | 28                   |
| M30   | 3.5  | 1    | 1.5  | 2    | 26.5 | 31                   |

JISB0205,0207抜粋

次に記載することがらは、参考のために示すものであって、規格の一部ではない。



### 六角穴付きボルトに対するざぐりおよびボルト穴の寸法


単位: mm

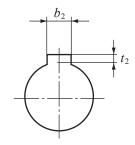
| 1 10                  |     |     |     |     |     |      |     |      |      |      |      |      |      |     |     |     |     |     |     |     |     |     |
|-----------------------|-----|-----|-----|-----|-----|------|-----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ねじの呼び<br>( <i>d</i> ) | М3  | M4  | M5  | M6  | M8  | M10  | M12 | M14  | M16  | M18  | M20  | M22  | M24  | M27 | M30 | M33 | M36 | M39 | M42 | M45 | M48 | M52 |
| $d_1$                 | 3   | 4   | 5   | 6   | 8   | 10   | 12  | 14   | 16   | 18   | 20   | 22   | 24   | 27  | 30  | 33  | 36  | 39  | 42  | 45  | 48  | 52  |
| d'                    | 3.4 | 4.5 | 5.5 | 6.6 | 9   | 11   | 14  | 16   | 18   | 20   | 22   | 24   | 26   | 30  | 33  | 36  | 39  | 42  | 45  | 48  | 52  | 56  |
| D                     | 5.5 | 7   | 8.5 | 10  | 13  | 16   | 18  | 21   | 24   | 27   | 30   | 33   | 36   | 40  | 45  | 50  | 54  | 58  | 63  | 68  | 72  | 78  |
| D'                    | 6.5 | 8   | 9.5 | 11  | 14  | 17.5 | 20  | 23   | 26   | 29   | 32   | 35   | 39   | 43  | 48  | 54  | 58  | 62  | 67  | 72  | 76  | 82  |
| Н                     | 3   | 4   | 5   | 6   | 8   | 10   | 12  | 14   | 16   | 18   | 20   | 22   | 24   | 27  | 30  | 33  | 36  | 39  | 42  | 45  | 48  | 52  |
| H'                    | 2.7 | 3.6 | 4.6 | 5.5 | 7.4 | 9.2  | 11  | 12.8 | 14.5 | 16.5 | 18.5 | 20.5 | 22.5 | 25  | 28  | 31  | 34  | 37  | 39  | 42  | 45  | 49  |
| H"                    | 3.3 | 4.4 | 5.4 | 6.5 | 8.6 | 10.8 | 13  | 15.2 | 17.5 | 19.5 | 21.5 | 23.5 | 25.5 | 29  | 32  | 35  | 38  | 41  | 44  | 47  | 50  | 54  |

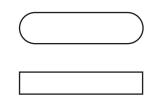
備考 上表のボルト穴径 (d') は、JIS B 1001(ボルト穴径及びざぐり径)のボルト穴径 2 級による。

### 平行キー用キー溝の形状及び寸法

### キー溝の断面




単位:mm


| キーの          | b <sub>1</sub> 及びb <sub>2</sub> |                       | 助形                    |                       | 通形                    | 締込み形                            |                                 |                  |              |           | 対応する                   | 対応する           |
|--------------|---------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------------------|---------------------------------|------------------|--------------|-----------|------------------------|----------------|
| 呼び寸法         | 01X002                          | <i>b</i> <sub>1</sub> | <i>b</i> <sub>2</sub> | <i>b</i> <sub>1</sub> | <i>b</i> <sub>2</sub> | b <sub>1</sub> 及びb <sub>2</sub> | r <sub>1</sub> 及びr <sub>2</sub> | t <sub>1</sub> の | t₂の<br>##### | たながたの     | 対応する<br>軸(穴)径 <i>d</i> | XIM9つ<br>KGギヤの |
| $b \times h$ | 基準寸法                            | 許容差<br>(H9)           | 許容差<br>(D10)          | 許容差<br>(N9)           | 許容差<br>(Js9)          | 許容差<br>(P9)                     |                                 | 基準寸法             | 基準寸法         | 許容差       | (参考)                   | 穴径             |
| 2×2          | 2                               | +0.025                | +0.060                | -0.004                | ±0.0125               | -0.006                          |                                 | 1.2              | 1.0          |           | 6~8                    |                |
| 3×3          | 3                               | 0                     | +0.020                | -0.029                | ±0.0125               | -0.031                          | 0.08 ~ 0.16                     | 1.8              | 1.4          | .01       | 8 ~ 10                 | 8,10           |
| 4×4          | 4                               | . 0 020               | . 0.070               |                       |                       | 0.012                           |                                 | 2.5              | 1.8          | +0.1<br>0 | 10 ~ 12                | 12             |
| 5×5          | 5                               | +0.030<br>0           | +0.078                | -0.030                | ±0.0150               | -0.012<br>-0.042                |                                 | 3.0              | 2.3          | 0         | 12 ~ 17                | 14,15,16       |
| 6×6          | 6                               | U                     | -0.030                | -0.030                |                       | -0.042                          | 0.16 ~ 0.25                     | 3.5              | 2.8          |           | 17 ~ 22                | 18,20,22       |
| (7×7)        | 7                               | +0.036                | +0.098                | 0                     |                       | -0.015                          | 0.10 0.23                       | 4.0              | 3.3          |           | 20 ~ 25                |                |
| 8×7          | 8                               | +0.036                | +0.098                | -0.036                | ±0.0180               | -0.013                          |                                 | 4.0              | 3.3          |           | 22 ~ 30                | 25,28,30       |
| 10×8         | 10                              | 0                     | +0.040                | -0.030                |                       | -0.031                          |                                 | 5.0              | 3.3          |           | 30 ∼ 38                | 32,35          |
| 12×8         | 12                              |                       |                       |                       |                       |                                 |                                 | 5.0              | 3.3          |           | 38 ~ 44                | 40             |
| 14×9         | 14                              | +0.043                | +0.120                | 0                     | ±0.0215               | -0.018                          | 0.25 ~ 0.40                     | 5.5              | 3.8          |           | 44 ~ 50                | 45,50          |
| (15×10)      | 15                              | 0                     | +0.050                | -0.043                | ±0.0213               | -0.061                          | 0.23 0.40                       | 5.0              | 5.3          | +0.2      | 50 ∼ 55                |                |
| 16×10        | 16                              |                       |                       |                       |                       |                                 |                                 | 6.0              | 4.3          | 0         | 50 ∼ 58                |                |
| 18×11        | 18                              |                       |                       |                       |                       |                                 |                                 | 7.0              | 4.4          |           | 58 ~ 65                |                |
| 20×12        | 20                              |                       |                       |                       |                       |                                 |                                 | 7.5              | 4.9          |           | 65 ~ 75                |                |
| 22×14        | 22                              | +0.052                | +0.149                | 0                     | ±0.0260               | -0.022                          |                                 | 9.0              | 5.4          |           | 75 ~ 85                |                |
| (24×16)      | 24                              | 0                     | +0.065                | -0.052                | ±0.0200               | -0.074                          | 0.40 ~ 0.60                     | 8.0              | 8.4          |           | 80 ~ 90                |                |
| 25×14        | 25                              |                       |                       |                       |                       |                                 | 0.40 * 0.00                     | 9.0              | 5.4          |           | 85 ~ 95                |                |
| 28×16        | 28                              |                       |                       |                       |                       |                                 |                                 | 10.0             | 6.4          |           | 95 ~ 110               |                |
| 32×18        | 32                              |                       |                       |                       |                       |                                 |                                 | 11.0             | 7.4          |           | 110 ~ 130              |                |
| (35×22)      | 35                              |                       |                       |                       |                       |                                 |                                 | 11.0             | 11.4         |           | 125 ~ 140              |                |
| 36×20        | 36                              |                       |                       |                       |                       |                                 |                                 | 12.0             | 8.4          |           | 130 ~ 150              |                |
| (38×24)      | 38                              | +0.062                | +0.180                | 0                     | ±0.0310               | -0.026                          |                                 | 12.0             | 12.4         |           | 140 ~ 160              |                |
| 40×22        | 40                              | 0                     | +0.080                | -0.062                | 20.0310               | -0.088                          | 0.70 ~ 1.00                     | 13.0             | 9.4          |           | 150 ~ 170              |                |
| (42×26)      | 42                              |                       |                       |                       |                       |                                 |                                 | 13.0             | 13.4         | +0.3      | 160 ~ 180              |                |
| 45×25        | 45                              |                       |                       |                       |                       |                                 |                                 | 15.0             | 10.4         | 0         | 170 ~ 200              |                |
| 50×28        | 50                              |                       |                       |                       |                       |                                 |                                 | 17.0             | 11.4         |           | 200 ~ 230              |                |
| 56×32        | 56                              |                       |                       |                       |                       |                                 |                                 | 20.0             | 12.4         |           | 230 ~ 260              |                |
| 63×32        | 63                              | +0.074                | +0.220                | 0                     | ±0.0370               | -0.032                          | 1.20 ~ 1.60                     | 20.0             | 12.4         |           | 260 ~ 290              |                |
| 70×36        | 70                              | 0                     | +0.100                | -0.072                |                       | -0.106                          |                                 | 22.0             | 14.4         |           | 290 ~ 330              |                |
| 80×40        | 80                              |                       |                       |                       |                       |                                 |                                 | 25.0             | 15.4         |           | 330 ~ 380              |                |
| 90×45        | 90                              | +0.087                | +0.260                | 0                     | ±0.0435               | -0.037                          | 2.00 ~ 2.50                     | 28.0             | 17.4         |           | 380 ~ 440              |                |
| 100×50       | 100                             | 0                     | +0.120                | -0.087                |                       | -0.124                          |                                 | 31.0             | 19.5         |           | 440 ~ 500              |                |

JIS B1301準拠

### 平行キー及びキー溝寸法

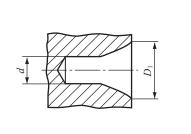
弊社のギヤのキーみぞ寸法は下記の規格を採用しており、全てJIS B 1301に準拠しております。



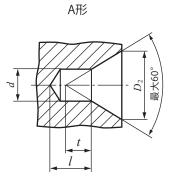


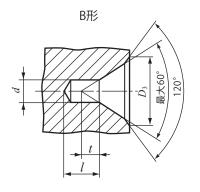


### キー材の寸法許容差


| $b \times t$     | 3 × 3 | 4 × 4 | 5 × 5 | 6 × 6 | 8 × 7 | 10 × 8 | 12 × 8 | 14 × 9 |
|------------------|-------|-------|-------|-------|-------|--------|--------|--------|
| <i>b</i> 許容差 (h) | h9    | h9    | h9    | h9    | h9    | h9     | h9     | h9     |
| t 許容差 (h)        | h9    | h9    | h9    | h9    | h11   | h11    | h11    | h11    |

### 弊社のギヤの穴径に適応するキーサイズ


単位: mm


| 海内オス軸欠                            | 対応する        | キーみぞの寸法          |       | 幅        |       | 深さ        |
|-----------------------------------|-------------|------------------|-------|----------|-------|-----------|
| 適応する軸径                            | KGギヤの穴径     | $b_2 \times t_2$ | $b_2$ | 許容差 Js 9 | $t_2$ | 許容差       |
| $\phi$ 8 $\sim$ $\phi$ 10         | φ 8         | 3 × 1.4          | 3     | ±0.0125  | 1.4   |           |
| φ δ. Θ φ10                        | φ10         | 3 × 1.4          | 3     | -0.0123  | 1.4   |           |
| $\phi$ 10 $\sim$ $\phi$ 12        | φ12         | 4 × 1.8          | 4     |          | 1.8   |           |
|                                   | φ14         |                  |       |          |       | . 0.1     |
| $\phi$ 12 $\sim$ $\phi$ 17        | φ15         | 5 × 2.3          | 5     |          | 2.3   | +0.1<br>0 |
|                                   | φ16         |                  |       | ±0.015   |       |           |
|                                   | φ18         |                  |       |          |       |           |
| $\phi$ 17 $\sim$ $\phi$ 22        | <i>φ</i> 20 | 6 × 2.8          | 6     |          | 2.8   |           |
|                                   | <i>φ</i> 22 |                  |       |          |       |           |
|                                   | <i>φ</i> 25 |                  |       |          |       |           |
| $\phi$ 22 $\sim$ $\phi$ 30        | <i>φ</i> 28 | 8 × 3.3          | 8     |          | 3.3   |           |
|                                   | <i>φ</i> 30 |                  |       | ±0.018   |       |           |
| $\phi$ 30 $\sim$ $\phi$ 38        | <i>φ</i> 32 | 10 × 3.3         | 10    |          | 3.3   | +0.2      |
| ψυυ Θψυσ                          | φ35         | 10 × 3.3         | 10    |          |       | 0         |
| $\phi$ 38 $\sim$ $\phi$ 44        | <i>φ</i> 40 | 12 × 3.3         | 12    |          | 3.3   |           |
| $\phi$ 44 $\sim$ $\phi$ 50        | <i>φ</i> 45 | 14 × 3.8         | 14    | ±0.0215  | 3.8   |           |
| $\psi_{44} \cdot \circ \psi_{30}$ | φ50         | 14 × 3.0         | 14    |          | 3.0   |           |

### センタ穴旧 JIS B1011



R形



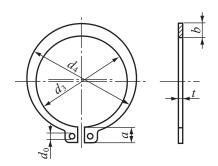


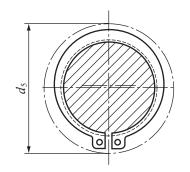
円弧形状をもつもの (JIS B 4304によるセンタ穴ドリル)

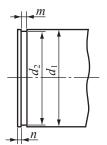
面取りをもたないもの (JIS B 4304によるセンタ穴ドリル)

面取りをもつもの (JIS B 4304によるセンタ穴ドリル)

注\*: 寸法1は、センタ穴ドリルの長さに基づくが、t よりも短くてはならない。


### 推奨するセンタ穴の寸法


単位:mm


|             |                      |                    | 種類             |                         |                |
|-------------|----------------------|--------------------|----------------|-------------------------|----------------|
| <i>d</i> 呼び | R形<br>JIS B 4304による  | A<br>JIS B 430     |                | JIS B 430               | 形<br>)4による     |
|             | D <sub>1</sub><br>呼び | $D_2$<br><b>呼び</b> | <i>t</i><br>参考 | <i>D</i> ₃<br><b>呼び</b> | <i>t</i><br>参考 |
| (0.5)       |                      | 1.06               | 0.5            |                         |                |
| (0.63)      |                      | 1.32               | 0.6            |                         |                |
| (0.8)       |                      | 1.70               | 0.7            |                         |                |
| 1.0         | 2.12                 | 2.12               | 0.9            | 3.15                    | 0.9            |
| (1.25)      | 2.65                 | 2.65               | 1.1            | 4                       | 1.1            |
| 1.6         | 3.35                 | 3.35               | 1.4            | 5                       | 1.4            |
| 2.0         | 4.25                 | 4.25               | 1.8            | 6.3                     | 1.8            |
| 2.5         | 5.3                  | 5.30               | 2.2            | 8                       | 2.2            |
| 3.15        | 6.7                  | 6.70               | 2.8            | 10                      | 2.8            |
| 4.0         | 8.5                  | 8.50               | 3.5            | 12.5                    | 3.5            |
| (5.0)       | 10.6                 | 10.60              | 4.4            | 16                      | 4.4            |
| 6.3         | 13.2                 | 13.20              | 5.5            | 18                      | 5.5            |
| (8.0)       | 17.0                 | 17.00              | 7.0            | 22.4                    | 7.0            |
| 10.0        | 21.2                 | 21.20              | 8.7            | 28                      | 8.7            |

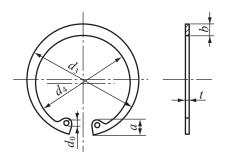
備考 括弧を付けて示した呼びのものは、なるべく用いない。

### 軸用 C形止め輪 (参考)

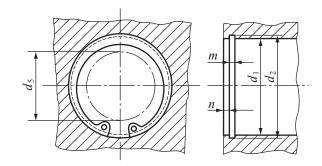







直径dの穴の位置は、止め輪を適用する軸に入れたとき、みぞにかくれないようにする。

*d₅*は、軸にはめるときの外周の最大径。


単位:mm

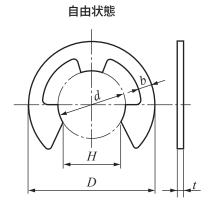
|          | - 31 |              |                       |          | 1 11 +4 |            |            |       |          |          | \ <del></del> |          | (A )     | 4     | 单位:mm |
|----------|------|--------------|-----------------------|----------|---------|------------|------------|-------|----------|----------|---------------|----------|----------|-------|-------|
| 呼        | び    |              |                       |          | 止め輪     |            |            |       |          |          |               | する軸(     |          |       |       |
|          |      |              | <i>d</i> <sub>3</sub> |          | t       | ,          |            | $d_0$ | ,        | ,        | -             | $l_2$    |          | n     | n     |
| 1        | 2    | 基準寸法         | 許容差                   | 基準<br>寸法 | 許容差     | b          | а          | (最小)  | d₅       | $d_1$    | 基準<br>寸法      | 許容差      | 基準<br>寸法 | 許容差   | (最小)  |
|          |      | り広           |                       | り広       |         |            |            |       |          |          | り広            | 0        | り広       |       |       |
| 10       |      | 9.3          | ±0.15                 |          |         | 1.6        | 3          | 1.2   | 17       | 10       | 9.6           | _        |          |       |       |
|          | 11   | 10.2         |                       |          |         | 1.0        | 2.4        | 1.2   | 10       | 1.1      | 10.5          | -0.09    |          |       |       |
| 12       | 11   | 10.2         |                       |          |         | 1.8        | 3.1        | 1.5   | 18       | 11       | 10.5          |          |          |       |       |
| 12       |      | 11.1<br>12.9 | -                     | 1        | ±0.05   | 1.8        | 3.2<br>3.4 | 1.5   | 19<br>22 | 12<br>14 | 11.5<br>13.4  |          | 1.15     |       |       |
| 15       |      | 13.8         | -                     |          |         | 2.1        | 3.4        |       | 23       | 15       | 14.3          | 0        |          |       |       |
| 16       |      | 14.7         | ±0.18                 |          |         | 2.1        | 3.5        | 1.7   | 23       | 16       | 15.2          | -        |          |       |       |
| 17       |      | 15.7         |                       |          |         | 2.2        | 3.7        | 1./   | 25       | 17       | 16.2          | -0.11    |          |       |       |
| 18       |      | 16.5         | -                     |          |         | 2.6        | 3.8        |       | 26       | 18       | 17            |          |          | -     |       |
| 10       | 19   | 17.5         | -                     |          |         | 2.7        | 3.8        |       | 27       | 19       | 18            | <u> </u> |          |       | 1.5   |
| 20       | 17   | 18.5         |                       |          |         | 2.7        | 3.9        |       | CC       | 20       | 19            |          |          |       |       |
| 22       |      | 20.5         | 1                     | 1.2      |         | 2.7        | 4.1        |       | 31       | 22       | 21            |          | 1.35     |       |       |
|          | 24   | 22.2         | 1                     |          |         | 3.1        | 4.2        |       | 33       | 24       | 22.9          | 0        |          |       |       |
| 25       |      | 23.2         | 1                     |          | ±0.06   | 3.1        | 4.3        | 2     | 34       | 25       | 23.9          | _        |          |       |       |
|          | 26   | 24.2         | ±0.2                  |          |         | 3.1        | 4.4        |       | 35       | 26       | 24.9          | -0.21    |          |       |       |
| 28       |      | 25.9         | -                     |          | 1 1     | 3.1        | 4.6        |       | 38       | 28       | 26.6          | 1 1      |          | +0.14 |       |
| 30       |      | 27.9         |                       | 1.6      |         | 3.5        | 4.8        |       | 40       | 30       | 28.6          | 1        | 1.75     | 0     |       |
| 32       |      | 29.6         |                       | 1.0      |         | 3.5        | 5          |       | 43       | 32       | 30.3          |          | 1./5     | 0     |       |
| 35       |      | 32.2         |                       |          |         | 4          | 5.4        |       | 46       | 35       | 33            | ]        |          |       |       |
|          | 36   | 33.2         | ±0.25                 |          |         | 4          | 5.4        |       | 47       | 36       | 34            |          |          |       |       |
|          | 38   | 35.2         |                       |          |         | 4.5        | 5.6        |       | 50       | 38       | 36            | 0        |          |       |       |
| 40       |      | 37           |                       | 1.8      |         | 4.5        | 5.8        |       | 53       | 40       | 38            | -0.25    | 1.95     |       |       |
|          | 42   | 38.5         |                       | 1.0      |         | 4.5        | 6.2        |       | 55       | 42       | 39.5          | -0.25    | 1.55     |       |       |
| 45       |      | 41.5         | ±0.4                  |          | ±0.07   | 4.8        | 6.3        |       | 58       | 45       | 42.5          |          |          |       | 2     |
|          | 48   | 44.5         |                       |          |         | 4.8        | 6.5        | 2.5   | 62       | 48       | 45.5          |          |          |       | _     |
| 50       |      | 45.8         |                       |          |         | 5          | 6.7        |       | 64       | 50       | 47            |          |          |       |       |
| 55       |      | 50.8         | -                     | 2        |         | 5          | 7          |       | 70       | 55       | 52            |          | 2.2      |       |       |
|          | 56   | 51.8         | -                     |          |         | 5          | 7          |       | 71       | 56       | 53            |          |          |       |       |
| 60       |      | 55.8         | -                     |          |         | 5.5<br>6.4 | 7.2<br>7.4 |       | 75<br>81 | 60<br>65 | 57            | . 0      |          | -     |       |
| 65<br>70 |      | 60.8<br>65.5 | ±0.45                 |          |         | 6.4        | 7.4        |       | 86       | 70       | 62<br>67      | -0.3     |          |       |       |
| 75       |      | 70.5         | -                     | 2.5      | ±0.08   | 7          | 7.0        |       | 92       | 75       | 72            | -        | 2.7      |       | 2.5   |
| 80       |      | 74.5         | -                     |          |         | 7.4        | 8.2        |       | 97       | 80       | 76.5          |          |          |       |       |
| 85       |      | 79.5         | -                     |          |         | 8          | 8.4        |       | 103      | 85       | 81.5          |          |          |       |       |
| 90       |      | 84.5         |                       |          |         | 8          | 8.7        |       | 103      | 90       | 86.5          | 0        |          |       |       |
| 95       |      | 89.5         | 1                     | 3        |         | 8.6        | 9.1        |       | 114      | 95       | 91.5          | -0.35    | 3.2      | .010  | 3     |
| 100      |      | 94.5         | 1                     |          | ±0.09   | 9          | 9.5        | 3     | 119      | 100      | 96.5          | 0.55     |          | +0.18 |       |
| 1.00     | 105  | 98           | ±0.55                 |          |         | 9.5        | 9.8        |       | 125      | 105      | 101           | 0        |          | 0     |       |
| 110      |      | 103          |                       | 4        |         | 9.5        | 10         |       | 131      | 110      | 106           |          | 4.2      |       | 4     |
| 120      |      | 113          | 1                     |          |         | 10.3       | 10.9       |       | 143      | 120      | 116           | -0.54    |          |       |       |

### 穴用 C形止め輪(参考)



直径dの穴の位置は、止め輪を適用する穴に入れたとき、みぞにかくれないようにする。




dsは、穴にはめるときの内周の最大径。

単位:mm

| 1   2   対法   許多                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | · - » |       |       |      | 止め輪      |      |      |       |     |       | 適用    | する穴(参 |      |       | 単位:mm            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-------|-------|------|----------|------|------|-------|-----|-------|-------|-------|------|-------|------------------|
| 1   2   数字                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 呼   | · O   | (     | $d_3$ | ı    |          | b    | а    | $d_0$ |     |       |       |       |      | n     |                  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1   | 2     |       | 許容差   | 基準寸法 | 許容差      | 約    | 約    | 最小    | d₅  | $d_1$ |       | 許容差   |      | 許容差   | <i>n</i><br>(最小) |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |       |       |      |          |      |      | 1.2   |     |       |       |       |      |       |                  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |       |       |      |          |      |      | 1.2   |     |       |       |       |      |       |                  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12  |       |       |       |      |          |      |      | 1.5   |     |       |       |       |      |       |                  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 13    |       | ±0.18 |      |          |      |      |       |     |       |       | +0.11 |      |       |                  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14  | 4.5   |       |       |      |          |      |      |       |     |       |       | 0     |      |       |                  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 15    |       |       | 1    | ±0.05    |      |      | 4 -   |     |       |       |       | 1.15 |       |                  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16  | 17    |       |       |      |          |      |      | 1./   |     |       |       |       |      |       |                  |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10  | 17    |       |       |      |          |      |      |       |     |       |       |       |      |       |                  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |       |       |      |          |      |      |       |     |       | _     |       |      |       | 1.5              |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |       |       |      |          |      |      |       |     |       |       |       |      |       |                  |
| 24   25.9   25   26.9   25   26.9   26.9   26.9   27.0   28   30.1   30   44.0   30   47.0   30.0   31.0   31.0   32.1   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0   33.0  |     |       |       | ±0.20 |      |          |      |      |       |     |       |       | +0.21 |      |       |                  |
| 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 24    |       |       |      |          |      |      |       |     |       |       |       |      |       |                  |
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25  | 27    |       |       |      |          |      |      | 2     |     |       |       | 0     |      |       |                  |
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23  | 26    |       |       |      |          |      |      |       |     |       |       |       |      |       |                  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28  |       |       |       | 1.2  |          |      |      |       |     |       |       |       | 1.35 |       |                  |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |       |       |      |          |      |      |       |     |       |       |       |      |       |                  |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |       |       |      | ±0.06    |      |      |       |     |       |       |       |      |       |                  |
| 36   38.8   39.8   39.8   39.8   39.8   39.8   39.8   39.8   39.8   39.8   39.8   39.8   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.5   39.0   39.0   39.0   39.5   39.0   39.0   39.5   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.5   30.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39.0   39 |     |       |       | ±0.25 |      |          |      |      |       |     |       |       |       |      | 1     |                  |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 36    | 38.8  |       | 1.   |          |      | 5.2  |       | 25  |       |       | +0.25 | 4 75 | +0.14 |                  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37  |       | 39.8  |       | 1.6  |          |      | 5.2  |       | 26  | 37    | 39.0  | ]     | 1./5 | 0     |                  |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 38    | 40.8  |       |      |          | 4.0  | 5.3  |       | 27  | 38    | 40.0  | 0     |      |       |                  |
| 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40  |       | 43.5  |       |      |          | 4.0  | 5.7  |       | 28  | 40    | 42.5  |       |      |       |                  |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42  |       | 45.5  | ±0.4  |      |          | 4.0  | 5.8  |       | 30  | 42    | 44.5  |       |      |       |                  |
| 48   51.5   50   54.2   52   55.6   59.2   55   59.2   56.2   55   69.2   66.2   66.2   66.2   66.2   66.2   66.3   72.5   70   74.5   72   76.5   79.5   80   85.5   80   85.5   90.5   90   95.5   90   95.5   90   95.5   90   95.5   90   95.5   90   95.5   90   95.5   100   105.5   112.0   1115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   112.0   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   11 | 45  |       | 48.5  |       | 1.8  |          | 4.5  | 5.9  |       | 33  | 45    | 47.5  |       | 1.95 |       |                  |
| \$\begin{array}{c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47  |       |       |       |      |          |      | 6.1  |       |     | 47    |       |       |      |       | 2                |
| 52         56.2           55         59.2           56         60.2           60         64.2           62         66.2           63         67.2           65         69.2           68         72.5           70         74.5           72         76.5           75         79.5           80         85.5           80         85.5           90         95.5           90         95.5           100         105.5           100         105.5           100         112.0           110         117.0           1115         122.0           4         4           5.1         6.5           5.5         6.9           5.5         7.0           6.0         7.4           6.6         7.8           7.0         8.0           7.6         8.3           8.0         85.5           95         100.5           100         105.5         The state of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 48    |       |       |      |          |      | 6.2  |       |     |       |       |       |      |       |                  |
| S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |       |       |       |      | +0.07    |      |      |       |     |       |       |       |      |       |                  |
| 56         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         70.2         70.2         70.5         70.2         70.5         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         70.2         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       |       |       |      | _ = 0.07 |      |      | 2.5   |     |       |       |       |      |       |                  |
| 60         64.2         66.2         66.2         ±0.45         5.5         6.8         46         60         63.0         +0.30         0         1         +0.30         0         0         1         +0.30         0         0         1         +0.30         0         0         1         +0.30         0         0         1         +0.30         0         0         1         +0.30         0         0         1         +0.30         0         0         1         +0.30         0         0         0         1         +0.30         0         0         0         0         0         1         +0.30         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td>55</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55  |       |       |       |      |          |      |      |       |     |       |       |       |      |       |                  |
| 62         66.2         ±0.45         5.5         6.9         48         62         65.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 56    |       |       | 2    |          |      |      |       |     |       |       |       | 2.2  |       |                  |
| 63     67.2       65     69.2       68     72.5       70     74.5       72     76.5       75     79.5       80     85.5       85     90.5       90     95.5       95     100.5       100     105.5       110     117.0       111     119.0       4     4       4     4       4     4       5.5     7.0       6.0     7.4       6.0     7.4       6.0     7.4       6.6     7.4       6.6     7.8       7.0     8.0       7.0     8.0       7.6     8.3       8.0     8.5       8.3     8.8       8.9     9.1       110     117.0       111     119.0       4     4          5.5     7.0       8.9     10.2       8.9     10.2       90     112     116.0       115     122.0       4     4          5.5     7.0       8.0     8.5       8.3     8.8       10.2     9.5 <td>_</td> <td></td> <td></td> <td>±0.45</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+0.30</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _   |       |       | ±0.45 |      |          |      |      |       |     |       |       | +0.30 |      |       |                  |
| Solution   Solution  | 62  | (2    |       |       |      |          |      |      |       |     |       |       | 0     |      |       |                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |       |       |       |      |          |      |      |       |     |       |       | -     |      | -     |                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68  | 00    |       |       |      |          |      |      |       |     |       |       |       |      |       |                  |
| 72       76.5         75       79.5         80       85.5         85       90.5         90       95.5         95       100.5         100       105.5         100       117.0         110       117.0         111       119.0         4       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00  | 70    |       |       |      |          |      |      |       |     |       |       |       |      |       |                  |
| 75         79.5         6.6         7.8         60         75         78.0         80         85.5         85         90.5         90.5         90.5         90         95.5         95         100.5         100.5         100.5         8.0         8.5         88.0         8.5         82         100         103.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         98.5         99.5         10.2         99.5         10.2         99.5         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0         112.0 <td>72</td> <td>/ 0</td> <td></td> <td></td> <td>2.5</td> <td>±0.08</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.7</td> <td></td> <td>2.5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72  | / 0   |       |       | 2.5  | ±0.08    |      |      |       |     |       |       |       | 2.7  |       | 2.5              |
| 80     85.5       85     90.5       90     95.5       95     100.5       100     105.5       101     117.0       112     119.0       115     122.0       4     7.0     8.0       7.0     8.0       8.0     8.5       8.0     8.5       8.0     8.5       8.0     8.5       8.0     8.5       8.0     8.5       8.0     8.5       8.0     8.5       8.0     8.5       8.0     8.5       8.2     100       105     109.0       8.9     10.2       8.9     10.2       90     112       116.0     0       4.2     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |       |       |       |      |          |      |      |       |     |       |       |       |      |       |                  |
| 85     90.5       90     95.5       95     100.5       100     105.5       105     112.0       110     117.0       112     119.0       4     4         7.0     8.0       8.0     8.5       8.3     8.8       8.9     9.1       8.9     9.1       8.9     10.2       8.9     10.2       90     112     116.0       90     112     116.0       90     112     116.0       90     112     116.0       90     112     116.0       90     112     116.0       90     4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |       |       | 1    |          |      |      |       |     |       |       |       |      |       |                  |
| 90     95.5       95     100.5       100     105.5       105     112.0       110     117.0       112     119.0       115     122.0       4     4       76     8.3       8.0     8.5       8.0     8.5       8.3     8.8       8.9     9.1       8.9     10.2       8.9     10.2       90     112     116.0       90     112     116.0       90     112     116.0       94     115     119.0       4.2     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       |       |       |      |          |      |      |       |     |       |       | 1035  |      |       |                  |
| 95     100.5       100     105.5       105     112.0       110     117.0       112     119.0       115     122.0       4     4       8.0     8.5       8.3     8.8       8.9     9.1       8.9     10.2       8.9     10.2       8.9     10.2       90     112       116.0     0       94     115     119.0       4.2     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       |       |       |      |          |      |      |       |     |       |       |       | 2.5  |       |                  |
| 100   105.5   ±0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |       |       |       | 3    |          |      |      |       |     |       |       | 0     | 3.2  |       | 3                |
| 105     112.0       110     117.0       112     119.0       115     122.0         4     ±0.09       8.9     10.2       8.9     10.2       90     112     116.0       94     115     119.0         4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _   |       |       | ±0.55 |      |          |      |      |       |     |       |       |       |      |       |                  |
| 110     117.0       112     119.0       115     122.0         4     \$\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathrm{\pmathr                                                                                                                                    |     | 105   |       |       |      |          |      |      | 3     |     |       |       |       |      | +0.18 |                  |
| 112     119.0       115     122.0       4     8.9       9.5     10.2       94     115       115     119.0       4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110 |       |       |       |      | ±0.09    |      |      |       |     |       |       | +0.54 |      |       |                  |
| 115 122.0 4 9.5 10.2 94 115 119.0 4.2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 112   |       | 1     |      |          |      |      |       | 90  | 112   |       | 0     |      |       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 115   |       |       | 4    |          |      |      |       | 94  |       |       | -     | 4.2  |       | 4                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120 |       | 127.0 | ±0.65 |      |          | 9.5  | 10.7 |       | 98  | 120   | 124.0 | +0.63 |      |       |                  |
| 125 132.0 10.0 10.7 3.5 103 125 129.0 <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125 |       |       |       |      |          | 10.0 | 10.7 | 3.5   | 103 |       | 129.0 | 0     |      |       |                  |

## 参考資料

### E 形止め輪(参考)



使用状態

備考 形状は,一例を示す。

単位:mm

|      |          |            |          |      | 止め輪      |           |          |        |     |                         |     | 適用       | する軸(   | 参考)      |        |      |
|------|----------|------------|----------|------|----------|-----------|----------|--------|-----|-------------------------|-----|----------|--------|----------|--------|------|
| 呼び   | (        | d          | 1        | D    | Ì        | Н         |          | t      | b   | <i>d</i> <sub>1</sub> の | 区分  | (        | $d_2$  | 1        | n      | n    |
| P7-0 | 基準<br>寸法 | 許容差        | 基準<br>寸法 | 許容差  | 基準<br>寸法 | 許容差       | 基準<br>寸法 | 許容差    | 約   | を越え                     | 以下  | 基準<br>寸法 | 許容差    | 基準<br>寸法 | 許容差    | (最小) |
| 0.8  | 0.8      | 0<br>-0.08 | 2        | ±0.1 | 0.7      |           | 0.2      | ±0.02  | 0.3 | 1                       | 1.4 | 0.8      | +0.05  | 0.3      | . 0.05 | 0.4  |
| 1.2  | 1.2      |            | 3        |      | 1        | 0         | 0.3      | ±0.025 | 0.4 | 1.4                     | 2   | 1.2      |        | 0.4      | +0.05  | 0.6  |
| 1.5  | 1.5      | 0          | 4        |      | 1.3      | -0.25     | 0.4      |        | 0.6 | 2                       | 2.5 | 1.5      | +0.06  |          | 0      | 0.8  |
| 2    | 2        | 0.00       | 5        |      | 1.7      | -0.23     | 0.4      | ±0.03  | 0.7 | 2.5                     | 3.2 | 2        |        | 0.5      |        |      |
| 2.5  | 2.5      | -0.09      | 6        |      | 2.1      |           | 0.4      |        | 0.8 | 3.2                     | 4   | 2.5      | 0      |          |        | 1    |
| 3    | 3        |            | 7        |      | 2.6      |           | 0.6      |        | 0.9 | 4                       | 5   | 3        |        |          |        |      |
| 4    | 4        | 0          | 9        |      | 3.5      | 0         | 0.6      |        | 1.1 | 5                       | 7   | 4        | +0.075 | 0.7      |        |      |
| 5    | 5        | 0.12       | 11       | ±0.2 | 4.3      | 0.3       | 0.6      |        | 1.2 | 6                       | 8   | 5        |        |          | +0.1   | 1.2  |
| 6    | 6        | -0.12      | 12       |      | 5.2      | -0.3      | 0.8      | ±0.04  | 1.4 | 7                       | 9   | 6        | 0      |          |        |      |
| 7    | 7        |            | 14       |      | 6.1      |           | 0.8      |        | 1.6 | 8                       | 11  | 7        |        | 0.9      | 0      | 1.5  |
| 8    | 8        | 0          | 16       |      | 6.9      | 0         | 0.8      |        | 1.8 | 9                       | 12  | 8        | +0.09  | 0.9      |        | 1.8  |
| 9    | 9        | -0.15      | 18       |      | 7.8      | 0.25      | 0.8      |        | 2   | 10                      | 14  | 9        | 0      |          |        | 2    |
| 10   | 10       |            | 20       |      | 8.7      | -0.35     | 1        | ±0.05  | 2.2 | 11                      | 15  | 10       |        | 1.15     |        |      |
| 12   | 12       | 0          | 23       |      | 10.4     |           | 1        | ±0.03  | 2.4 | 13                      | 18  | 12       | +0.11  | 1.13     |        | 2.5  |
| 15   | 15       | -0.18      | 29       |      | 13       | 0         | 1.6      | ±0.06  | 2.8 | 16                      | 24  | 15       | 0      | 1.75     | +0.14  | 3    |
| 19   | 19       | 0          | 37       | ±0.3 | 16.5     | -0.45     | 1.6      | _ 5.55 | 4   | 20                      | 31  | 19       | +0.13  |          | 0      | 3.5  |
| 24   | 24       | -0.21      | 44       |      | 20.8     | 0<br>-0.5 | 2        | ±0.07  | 5   | 25                      | 38  | 24       | 0      | 2.2      |        | 4    |